The advantages of using prestressed carbon fiber reinforced polymer (CFRP) for strengthening and retrofitting structures have been reported in recent years. In this regard, most of the studies on prestressed CFRP technique have been carried out in the laboratory test with small-scale and no damage (reinforced concrete) RC beam. However, the real structures that need to be retrofitted in service are often degraded or damaged due to early cracking. This paper aims at studying the effect of prestressed CFRP method on full-scale and damaged RC beams. The damaged levels of four full-scale damaged hollow RC beams taken from an old bridge were evaluated. One damaged beam was tested to check the residual capacity, and the other three were strengthened with prestressed composite strengthened CFRP and steel-carbon fiber reinforced polymer (SCFRP). The flexural behavior of non-strengthened and prestressed strengthened beams was investigated. During the experiments, the failure modes, deflection, yield and ultimate load, strains of concrete, steel reinforcements, and SCFRP were measured and analyzed. The results showed that the stiffness at the elastic stage was increased by 64.9%, 66.9%, and 67.1% after strengthened by SCFRP with 30%, 40%, and 60% prestressing level. Moreover, the ultimate load of damaged hollow RC beams were improved by 19.53%, 21.82%, and 31.9%, respectively. The flexural behavior of the severely damaged RC beam with strength reduction coefficient of 0.65 can be recovered after being strengthened by SCFRP with 40% prestressing levels. Meanwhile, SCFRP-concrete interface debonding failure occurred when the prestressing level exceed 60%, and the characteristics of brittle failure became more evident with increased prestressing level of the SCFRP.
The durability of reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) is a worldwide concern in structural engineering. As an important part of the strengthened beam, the performance of the CFRP–concrete interface under hygrothermal environments is a delicate problem. In this paper, the fatigue behavior of CFRP-strengthened RC beams is analyzed by a theoretical model. In the model, CFRP–concrete interface degradation under hygrothermal environments is involved. Since interface debonding and rebar fracture induced by intermediate cracking are two typical failure modes, the damage models of rebar and the CFRP–concrete interface are established. Based on the theoretical model, the failure mode of CFRP-strengthened RC beams can be predicted, and fatigue life can be determined. The results showed that IC debonding is more likely to occur under hygrothermal environments. The accurate prediction of failure modes is essential for fatigue life prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.