BACKGROUND Glycogen synthase kinase 3β (GSK3B, GSK-3β) is a multi-functional protein kinase involved in various cellular processes and its activity elevates after serum deprivation. We have shown that inhibition of GSK-3β activity triggered a profound autophagic response and subsequent necrotic cell death after serum deprivation in prostate cancer cells. In this study, we dissected the mechanisms involved in GSK-3β inhibition-triggered autophagy. METHODS Prostate cancer PC-3 and DU145 cells were used in the study. Multiple GSK-3β specific inhibitors were used including small chemicals TDZD8, Tideglusib, TWS119, and peptide L803-mts. Western blot assay coupled with phospho-specific antibodies were used in detecting signal pathway activation. ATP levels were assessed with ATPLite kit and HPLC methods. Autophagy response was determined by evaluating Microtubule-associated proteins 1A/1B light chain 3B (LC3B) processing and p62 protein stability in Western blot assays. Immunofluorescent microscopy was used to detect LKB1 translocation. RESULTS Inhibition of GSK-3β activity resulted in a significant decline of cellular ATP production, leading to a significant increase of AMP/ATP ratio, a strong trigger of AMP-activated protein kinase (AMPK) activation in prostate cancer PC-3 cells. In parallel with increased LC-3B biosynthesis and p62 protein reduction, the classical sign of autophagy induction, AMPK was activated after inhibition of GSK-3β activity. Further analysis revealed that Liver kinase B1 (LKB1) but not Calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) is involved in AMPK activation and autophagy induction triggered by GSK-3β inhibition. Meanwhile, GSK-3β inhibition promoted LKB1 translocation from nuclear to cytoplasmic compartment and enhanced LKB1 interaction with its regulatory partners Mouse protein-25 (MO25) and STE20-related adaptor (STRAD). CONCLUSIONS In conclusion, our data suggest that GSK-3β plays an important role in controlling autophagy induction by modulating the activation of LKB1-AMPK pathway after serum deprivation.
The epithelial-mesenchymal transition (EMT) induced by EGF promotes cervical cancer progression; however, the mechanisms underlying the EGF-induced EMT remain unclear. In this study, we reported that miR155 overexpression suppressed EGF-induced EMT, decreased migration/invasion capacities, inhibited cell proliferation and increased the chemo-sensitivity to DDP in human Caski cervical cancer cells. Further, the overexpression of miR155 increased TP53 expression but reduced SMAD2, and CCND1 expression levels. These data suggest that miR155 negatively regulates EGF-induced EMT. We conclude that miR155 does not act as an oncogene but as a tumour suppressor in Caski cells.
Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anti-cancer effect of a recently isolated natural compound Alternol in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived non-malignant cells. As assessed by trypan blue exclusion assay, a significant cell death was observed in all prostate cancer cell lines except DU145 but not in non-malignant (RWPE-1and BPH1) cells. Further analyses revealed that Alternol-induced cell death was an apoptotic response in a dose- and time-dependent manner, as evidenced by the appearance of apoptosis hallmarks such as Caspase-3 processing and PARP cleavage. Interestingly, Alternol-induced cell death was completely abolished by reactive oxygen species (ROS) scavengers, N-acetylcysteine (N-Ac) and dihydrolipoic acid (DHLA). We also demonstrated that the pro-apoptotic Bax protein was activated after Alternol treatment and was critical for Alternol-induced apoptosis. Animal xenograft experiments in nude mice showed that Alternol treatment largely suppressed tumor growth of PC-3 xenografts but not Bax-null DU-145 xenografts in vivo. These data suggest that Alternol might serve as a novel anticancer agent for late stage prostate cancer patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.