A 42 kb region on human chromosome 9p21 encodes for three distinct tumor suppressors, p16INK4A, p14ARF and p15INK4B, and is altered in an estimated 30–40% of human tumors. The expression of the INK4A-ARF-INK4B gene cluster is silenced by polycomb during normal cell growth and is activated by oncogenic insults and during aging. How the polycomb is recruited to repress this gene cluster is unclear. Here, we show that expression of oncogenic Ras, which stimulates the expression of p15INK4B and p16INK4A, but not p14ARF, inhibits the expression of ANRIL (antisense non-coding RNA in the INK4 locus), a 3.8 kb-long non-coding RNA expressed in the opposite direction from INK4A-ARF-INK4B. We show that the p15INK4B locus is bound by SUZ12, a component of polycomb repression complex 2 (PRC2), and is H3K27-trimethylated. Notably, depletion of ANRIL disrupts the SUZ12 binding to the p15INK4B locus, increases the expression of p15INK4B, but not p16INK4A or p14ARF, and inhibits cellular proliferation. Finally, RNA immunoprecipitation demonstrates that ANRIL binds to SUZ12 in vivo. Collectively, these results suggest a model in which ANRIL binds to and recruits PRC2 to repress the expression of p15INK4B locus.
Purpose Despite initial sensitivity to chemotherapy, ovarian cancers (OVCA) often develop drug-resistance, which limits patient survival. Using specimens and/or genomic data from 289 patients and a panel of cancer cell lines, we explored genome-wide expression changes that underlie the evolution of OVCA chemo-resistance and characterized the BCL2 antagonist of cell death (BAD) apoptosis pathway as a determinant of chemo-sensitivity and patient survival. Experimental Design Serial OVCA cell cisplatin treatments were performed in parallel with measurements of genome-wide expression changes. Pathway analysis was performed on genes associated with increasing cisplatin-resistance (EC50). BAD-pathway expression and BAD-protein phosphorylation were evaluated in patient samples and cell lines as determinants of chemo-sensitivity and/or clinical outcome and as therapeutic targets. Results Induced in vitro OVCA cisplatin-resistance was associated with BAD-pathway expression (P < 0.001). In OVCA cell lines and primary specimens, BAD-protein phosphorylation was associated with platinum-resistance (n = 147, P < 0.0001) and also with overall patient survival (n = 134, P = 0.0007). Targeted modulation of BAD-phosphorylation levels influenced cisplatin sensitivity. A 47-gene BAD-pathway score was associated with in vitro phosphorylated-BAD levels and with survival in 142 patients with advanced-stage (III/IV) serous OVCA. Integration of BAD-phosphorylation or BAD-pathway score with OVCA surgical cytoreductive status was significantly associated with overall survival by log-rank test (P = 0.004 and <0.0001, respectively). Conclusion The BAD apoptosis pathway influences OVCA chemo-sensitivity and overall survival, likely via modulation of BAD-phosphorylation. The pathway has clinical relevance as a biomarker of therapeutic response, patient survival, and as a promising therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.