With the rise of self-driving technology research, the establishment of a scientific and perfect legal restraint and supervision system for self-driving vehicles has been gradually paid attention to. The determination of tort liability subject of traffic accidents of self-driving cars is different from that of ordinary motor vehicle traffic accident tort, which challenges the application of traditional fault liability and product liability. The tort issue of self-driving cars should be discussed by distinguishing two kinds of situations: assisted driving cars and highly automated driving, and typological analysis of each situation is needed. When the car is in the assisted driving mode, the accident occurs due to the quality defect or product damage of the self-driving car, and there is no other fault cause; then, the producer and seller of the car should bear the product liability according to the no-fault principle; if the driver has a subjective fault and fails to exercise a high degree of care; the owner and user of the car should bear the fault liability. This paper analyzes the study of the impact of autonomous driving public on public psychological health, summarizes the key factors affecting the public acceptance of autonomous driving, and dissects its impact on public psychological acceptance. In order to fully study the responsibility determination of autonomous driving system accidents and their impact on public psychological health, this paper proposes an autonomous driving risk prediction model based on artificial intelligence technology, combined with a complex intelligent traffic environment vehicle autonomous driving risk prediction method, to complete the risk target detection. The experimental results in the relevant dataset demonstrate the effectiveness of the proposed method.
The age of algorithms is here, and it is really changing people’s lives. More and more ethical problems related to algorithms have attracted people’s attention, but the related ethical research is still far behind the research of algorithms. As more intelligent algorithms emerge in an endless stream, there will also be a lot of algorithmic ethical issues. On the other hand, with the continuous improvement of the development level of the automobile industry, people have a stronger demand for the safety and stability of modern transportation, and more and more autonomous driving technology has been promoted and applied in the market. At present, most of the studies on the longitudinal collision avoidance system of vehicles use collision warning or emergency braking to avoid collision. However, when the vehicle is in a special situation such as high speed and slippery road, emergency steering is more effective. In order to further improve the vehicle safety and ethical algorithm design points, this article revolves around vehicle lateral active collision avoidance control method research, the collision avoidance decision-making, and path planning and collision avoidance transverse vehicle longitudinal motion control is analyzed, and based on automated driving simulation experiment, the tests carried out to verify the designed control strategy. The experimental results show that the proposed method not only has a good effect of preventing automatic driving collision but also can meet the requirements of algorithm ethics. This research can effectively guide the research of algorithmic ethics in the field of autonomous driving and effectively reduce the occurrence of traffic accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.