BackgroundSilicosis is an occupational lung disease caused by inhalation of silica dust characterized by lung inflammation and fibrosis. Previous study showed that Th1 and Th2 cytokines are involved in silicosis, but Th1/Th2 polarization during the development of silicosis is still a matter of debate. Regulatory T cells (Treg cells) represent a crucial role in modulation of immune homeostasis by regulating Th1/Th2 polarization, but their possible implication in silicosis remains to be explored.Methodology/Principal FindingsTo evaluate the implication of Treg cells in the development of silicosis, we generated the Treg-depleted mice model by administration of anti-CD25 mAbs and mice were exposed to silica by intratracheal instillation to establish experimental model of silica-induced lung fibrosis. The pathologic examinations show that the Treg-depleted mice are susceptive to severer inflammation in the early stage, with enhanced infiltration of inflammatory cells. Also, depletion of Treg cells causes a delay of the progress of silica-induced lung fibrosis in mice model. Further study of mRNA expression of cytokines reveals that depletion of Tregs leads to the increased production of Th1-cytokines and decreased production of Th2-cytokine. The Flow Cytometry and realtime PCR study show that Treg cells exert the modulation function both directly by expressing CTLA-4 at the inflammatory stage, and indirectly by secreting increasing amount of IL-10 and TGF-β during the fibrotic stage in silica-induced lung fibrosis.Conclusion/SignificanceOur study suggests that depletion of Tregs may attenuate the progress of silica-induced lung fibrosis and enhance Th1 response and decelerate Th1/Th2 balance toward a Th2 phenotype in silica-induced lung fibrosis. The regulatory function of Treg cells may depend on direct mechanism and indirect mechanism during the inflammatory stage of silicosis.
Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion.
The influence of temperature, CO2 concentration and relative humidity on the carbonation depth and compressive strength of concrete was investigated. Meanwhile, phase composition, types of hydration products and microstructure characteristics of samples before and after the carbonation were analyzed by XRD and ESEM. Research results demonstrate that temperature, CO2 concentration and relative humidity influence the carbonation depth and compressive strength of concrete significantly. There is a linear relationship between temperature and carbonation depth, as well as the compressive strength of concrete. CO2 concentration and relative humidity present a power function and a polynomial function with carbonation depth of concrete, respectively. The concrete carbonation depth increases with the increase of relative humidity and reaches the maximum value when the relative humidity is 70%. Significant differences of phase composition, hydration products and microstructure are observed before and after the carbonation. Carbonization products of samples are different with changes of temperatures (10 °C, 20 °C and 30 °C). The result of crystal structure analysis indicates that the carbonation products are mainly polyhedral spherical vaterite and aragonite.
RPE65 is a membrane-associated protein abundantly expressed in the retinal pigment epithelium, which converts all-trans-retinyl ester to 11-cis-retinol, a key step in the retinoid visual cycle. Although three cysteine residues (Cys-231, Cys-329, and Cys-330) were identified to be palmitylated in RPE65, recent studies showed that a triple mutant, with all three Cys replaced by an alanine residue, was still palmitylated and remained membrane-associated, suggesting that there are other yet to be identified palmitylated Cys residues in RPE65. Here we mapped the entire RPE65 using mass spectrometry analysis and demonstrated that a trypsin-digested RPE65 fragment (residues 98 -118), which contains two Cys residues (Cys-106 and Cys-112), was singly palmitylated in both native bovine and recombinant human RPE65. To determine whether Cys-106 or Cys-112 is the palmitylation site, these Cys were separately replaced by alanine. Mass spectrometry analysis of purified wild-type RPE65 and C106A and C112A mutants showed that mutation of Cys-106 did not affect the palmitylation status of the fragment 98 -118, whereas mutation of Cys-112 abolished palmitylation in this fragment. Subcellular fractionation and immunocytochemistry analyses both showed that mutation of Cys-112 dissociated RPE65 from the membrane, whereas the C106A mutant remained associated with the membrane. In vitro isomerohydrolase activity assay showed that C106A has an intact enzymatic activity similar to that of wtRPE65, whereas C112A lost its enzymatic activity. These results indicate that the newly identified Cys-112 palmitylation site is essential for the membrane association and activity of RPE65.Both rod and cone visual pigments in vertebrates require 11-cis-retinal as the chromophore. Isomerization of 11-cis-retinal to all-trans-retinal by a photon triggers the phototransduction cascade and initiates vision (1, 2). Recycling of 11-cis-retinal through the retinoid visual cycle is an essential process for the regeneration of visual pigments and for normal vision (3, 4). The key step in the visual cycle is to isomerize all-trans-retinyl ester to 11-cis-retinol in retinal pigment epithelium (RPE) 2 (5, 6). This isomerization process is known to be catalyzed by an isomerohydrolase in the RPE. Several recent lines of evidence suggest that RPE65 is the isomerohydrolase in the visual cycle (7-9).RPE65 is a microsomal protein, abundantly expressed in the RPE (10 -12). RPE65 knock-out (Rpe65 Ϫ/Ϫ ) mice showed a lack of 11-cis-retinoids, overaccumulation of all-trans-retinyl ester, impaired visual function, and early degeneration of cone photoreceptors (7-9). RPE65 is an iron(II)-dependent enzyme, in which an iron is coordinated by four conserved histidine (His) residues (His-180, -241, -313, and -527) based on molecular modeling using a crystal structure of apocarotenoid monooxygenase as a template (8, 13-15). RPE65 lacks any predicted transmembrane helix and is associated with the microsomal membrane (11). Previous studies have shown that membrane association of R...
Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.