The structure-activity relationship of flavonoids as inhibitors of xanthine oxidase and as scavengers of the superoxide radical, produced by the action of the enzyme xanthine oxidase, was investigated. The hydroxyl groups at C-5 and C-7 and the double bond between C-2 and C-3 were essential for a high inhibitory activity on xanthine oxidase. Flavones showed slightly higher inhibitory activity than flavonols. All flavonoid derivatives except isorhamnetin (30) were less active than the original compounds. For a high superoxide scavenging activity on the other hand, a hydroxyl group at C-3' in ring B and at C-3 were essential. According to their effect on xanthine oxidase and as superoxide scavengers, the flavonoids could be classified into six groups: superoxide scavengers without inhibitory activity on xanthine oxidase (category A), xanthine oxidase inhibitors without any additional superoxide scavenging activity (category B), xanthine oxidase inhibitors with an additional superoxide scavenging activity (category C), xanthine oxidase inhibitors with an additional pro-oxidant effect on the production of superoxide (category D), flavonoids with a marginal effect on xanthine oxidase but with a prooxidant effect on the production of superoxide (category E), and finally, flavonoids with no effect on xanthine oxidase or superoxide (category F).
The aryl hydrocarbon receptor (AHR) recognises xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors1–4 and is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification5. Thus, CYP1 enzymes appear to play an important feedback role that curtails the duration of AHR signalling6, but it remains elusive whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells (IECs) resulted in loss of AHR-dependent type 3 innate lymphoid cells (ILC3) and T helper 17 (Th17) cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that IECs serve as gatekeepers for the supply of AHR ligands to the host and emphasise the importance of feedback control in modulating AHR pathway activation.
The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.