BackgroundIn our previous study, Citrobacter werkmanii BF-6 was isolated from an industrial spoilage sample and demonstrated an excellent ability to form biofilms, which could be affected by various environmental factors. However, the genome sequence of this organism has not been reported so far.ResultsWe report the complete genome sequence of C. werkmanii BF-6 together with the description of the genome features and its annotation. The size of the complete chromosome is 4,929,789 bp with an average coverage of 137×. The chromosome exhibits an average G + C content of 52.0%, and encodes 4570 protein coding genes, 84 tRNA genes, 25 rRNA operons, 3 microsatellite sequences and 34 minisatellite sequences. A previously unknown circular plasmid designated as pCW001 was also found with a length of 212,549 bp and a G + C content of 48.2%. 73.5%, 75.6% and 92.6% of the protein coding genes could be assigned to GO Ontology, KEGG Pathway, and COG (Clusters of Orthologous Groups) categories respectively. C. werkmanii BF-6 and C. werkmanii NRBC 105721 exhibited the closest evolutionary relationships based on 16S ribosomal RNA and core-pan genome assay. Furthermore, C. werkmanii BF-6 exhibits typical bacterial biofilm formation and development. In the RT-PCR experiments, we found that a great number of biofilm related genes, such as bsmA, bssR, bssS, hmsP, tabA, csgA, csgB, csgC, csgD, csgE, and csgG, were involved in C. werkmanii BF-6 biofilm formation.ConclusionsThis is the first complete genome of C. werkmanii. Our work highlights the potential genetic mechanisms involved in biofilm formation and paves a way for further application of C. werkmanii in biofilms research.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4157-9) contains supplementary material, which is available to authorized users.
Bacterial biofilms, formed on biotic or abiotic surfaces, can lead to serious environmental or medical problems. Therefore, it is necessary to find novel antimicrobial agents to combat biofilms, or more effective combinations of existing biocides. In this study, initial biofilms of Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538 in the presence of xylitol or xylitol and isothiazolones were determined using crystal violet staining in 96-well microplates and confocal laser scanning microscopy. Xylitol and isothiazolones exhibited enhanced synergistic inhibition of initial biofilm formation, and also the structure and production of extracellular polymeric substances by P. aeruginosa ATCC 9027 and S. aureus ATCC 6538 in a dose-dependent manner. In addition, xylitol and isothiazolones inhibited and restored the swimming motility of P. aeruginosa ATCC 9027, respectively. These findings show that a combination of xylitol and isothiazolones exerts pronounced antimicrobial activity against P. aeruginosa and S. aureus biofilms and may be applicable for preventing or reducing bacterial biofilms in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.