The photostability of two donor polymers, DPP-TT-T and PTB7, is compared in neat films and blend films with PC(71)BM. In both neat and blend films, PTB7 is shown to be relatively unstable. This observation is shown to correlate with transient optical studies of long lived polymer triplets and with molecular probe studies of singlet oxygen yields.
This paper is concerned with the photophysics of triplet excitons in conjugated donor polymers, and their quenching by molecular oxygen. These photophysics are assayed by transient absorption spectroscopy, and correlated with X‐ray diffraction measurements of relative material crystallinity. Eleven different donor polymers are considered, including representatives from several classes of donor polymers recently developed for organic solar cell applications. Triplet lifetimes in an inert (nitrogen) environment range from <100 ns to 5 μs. A remarkably quantitative correlation is observed between these triplet lifetimes and polymer XRD strength, with more crystalline polymers exhibiting shorter triplet lifetimes. Given the broad range of polymers considered, this correlation indicates that material crystallinity is the dominant factor determining triplet lifetime for the polymers studied herein. The rate constant for oxygen quenching of these triplet states, determined from a comparison of transient absorption data under inert and oxygen environments, also show a correlation with material crystallinity. Overall these dependencies result in the yield of oxygen quenching of polymer triplet states increasing strongly as the crystallinity of the polymer is reduced. These photophysical data are compared with photochemical stability of these donor polymers, assayed by photobleaching studies of polymer films under continuous light exposure in an oxygen environment. A partial correlation is observed, with the most stable polymers being the most crystalline, exhibiting negligible oxygen quenching yields. These results are discussed in terms of the likely origins of the correlations between material crystallinity and photophysics, and in terms of their implications for the environmental stability of such donor polymers in optoelectronic devices.
The synthesis and characterization four diketopyrrolopyrrole containing conjugated polymers for use in organic photovoltaics is presented. Excellent energy level control is demonstrated through heteroatomic substitution whilst maintaining similar solid state properties as shown by X-ray diffraction and atomic force microscopy. Inverted solar cells were fabricated with the best devices having short circuit currents exceeding 16 mA cm − 2 and effi ciencies of over 5% irrespective of whether [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 60 BM) or [6,6]-phenyl-C 71 -butyric acid methyl ester (PC 70 BM) is used. Transient absorption spectroscopy on the bulk heterojunction blends shows effi cient charge photo-generation, with the variations in short circuit current correlated to the energetic offset between polymer and fullerene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.