Vibration and oil debris analysis are widely used in gearbox condition monitoring as the typical indirect and direct sensing techniques. However, they have their own advantages and disadvantages. To better utilize the sensing information and overcome its shortcomings, this paper presents a virtual sensing technique based on artificial intelligence by fusing low-cost online vibration measurements to derive a gearbox condition indictor, and its performance is comparable to the costly offline oil debris measurements. Firstly, the representative features are extracted from the noisy vibration measurements to characterize the gearbox degradation conditions. However, the extracted features of high dimensionality present nonlinearity and uncertainty in the machinery degradation process. A new nonlinear feature selection and fusion method, named kernel factor analysis, is proposed to mitigate the aforementioned challenge. Then the virtual sensing model is constructed by incorporating the fused vibration features and offline oil debris measurements based on support vector regression. The developed virtual sensing technique is experimentally evaluated in spiral bevel gear wear tests, and the results show that the developed kernel factor analysis method outperforms the state-of-the-art feature selection techniques in terms of virtual sensing model accuracy.
Gearbox, as a critical component to convert speed and torque to maintain machinery normal operation in the industrial processes, has been received and still needs considerable attentions to ensure its reliable operation. Direct sensing and indirect sensing techniques are widely used for gearbox condition monitoring and fault diagnosis, but both have Pros and Cons. To bridge their gaps and enhance the performance of early fault diagnosis, this paper presents a new virtual sensing technique based on extreme learning machine (ELM) for gearbox degradation status estimation. By fusing the features extracted from indirect sensing measurements (e.g. in-process vibration measurement), ELM based virtual sensing model could infer the gearbox condition which was usually directly indicated by the direct sensing measurements (e.g. offline oil debris mass (ODM)). Different state-of-the-art dimension reduction techniques have been investigated for feature selection and fusion including principal component analysis (PCA) and its kernel version, locality preserving projection (LPP) method. The effectiveness of the presented virtual sensing technique is experimentally validated by the sensing measurements from a spiral bevel gear test rig. The experimental results show that the estimated gearbox condition by the virtual sensing model based on ELM and kernel PCA well follows the trend of truth data and presents the better performance over the support vector regression based virtual sensing scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.