The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC 50 values of 1-5 M and to disassemble preformed PHFs at DC 50 values of 2-4 M. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.
Background: Cathelicidins are a family of vertebrate antimicrobial peptides that play pivotal roles in host immune defense against microbial invasions. Results: A novel cathelicidin (Hc-CATH) with potent antimicrobial and anti-inflammatory activity and a special mechanism was identified from the sea snake Hydrophis cyanocinctus. Conclusion: Hc-CATH is a potent candidate for the development of peptide antibiotics. Significance: Hc-CATH is the first cathelicidin identified from sea snakes and possesses a special anti-inflammatory mechanism.
BackgroundLectins are sugar-binding proteins that specifically recognize sugar complexes. Based on the specificity of protein–sugar interactions, different lectins could be used as carrier molecules to target drugs specifically to different cells which express different glycan arrays. In spite of lectin's interesting biological potential for drug targeting and delivery, a potential disadvantage of natural lectins may be large size molecules that results in immunogenicity and toxicity. Smaller peptides which can mimic the function of lectins are promising candidates for drug targeting.Principal FindingsSmall peptide with lectin-like behavior was screened from amphibian skin secretions and its structure and function were studied by NMR, NMR-titration, SPR and mutant analysis. A lectin-like peptide named odorranalectin was identified from skin secretions of Odorrana grahami. It was composed of 17 aa with a sequence of YASPKCFRYPNGVLACT. L-fucose could specifically inhibit the haemagglutination induced by odorranalectin. 125I-odorranalectin was stable in mice plasma. In experimental mouse models, odorranalectin was proved to mainly conjugate to liver, spleen and lung after i.v. administration. Odorranalectin showed extremely low toxicity and immunogenicity in mice. The small size and single disulfide bridge of odorranalectin make it easy to manipulate for developing as a drug targeting system. The cyclic peptide of odorranalectin disclosed by solution NMR study adopts a β-turn conformation stabilized by one intramolecular disulfide bond between Cys6-Cys16 and three hydrogen bonds between Phe7-Ala15, Tyr9-Val13, Tyr9-Gly12. Residues K5, C6, F7, C16 and T17 consist of the binding site of L-fucose on odorranalectin determined by NMR titration and mutant analysis. The structure of odorranalectin in bound form is more stable than in free form.ConclusionThese findings identify the smallest lectin so far, and show the application potential of odorranalectin for drug delivery and targeting. It also disclosed a new strategy of amphibian anti-infection.
Blood-feeding arthropods rely heavily on the pharmacological properties of their saliva to get a blood meal and suppress immune reactions of hosts. Little information is available on antihemostatic substances in horsefly salivary glands although their saliva has been thought to contain wide range of physiologically active molecules. In traditional Eastern medicine, horseflies are used as antithrombosis material for hundreds of years. By proteomics coupling transcriptome analysis with pharmacological testing, several families of proteins or peptides, which exert mainly on anti-thrombosis functions, were identified and characterized from 60,000 pairs of salivary glands of the horsefly Tabanus yao Macquart (Diptera, Tabanidae). They are: (I) ten fibrin(ogen)olytic enzymes, which hydrolyze specially alpha chain of fibrin(ogen) and are the first family of fibrin(ogen)olytic enzymes purified and characterized from arthropods; (II) another fibrin(ogen)olytic enzyme, which hydrolyzes both alpha and beta chain of fibrin(ogen); (III) ten Arg-Gly-Asp-motif containing proteins acting as platelet aggregation inhibitors; (IV) five thrombin inhibitor peptides; (V) three vasodilator peptides; (VI) one apyrase acting as platelet aggregation inhibitor; (VII) one peroxidase with both platelet aggregation inhibitory and vasodilator activities. The first three families are belonging to antigen five proteins, which show obvious similarity with insect allergens. They are the first members of the antigen 5 family found in salivary glands of blood sucking arthropods to have anti-thromobosis function. The current results imply a possible evolution from allergens of blood-sucking insects to anti-thrombosis agents. The extreme diversity of horsefly anti-thrombosis components also reveals the anti-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.