Brain tumor segmentation is an important content in medical image processing, and it is also a very common research in medicine. Due to the development of modern technology, it is very valuable to use deep learning (DL) and multimodal MRI images to study brain tumor segmentation. In order to solve the problems of low efficiency and low accuracy of brain tumor segmentation, this paper proposes DL to conduct research on multimodal MRI image segmentation, aiming to make accurate diagnosis and treatment for doctors. In addition, this paper constructs an automatic diagnosis system for brain tumors, uses GLCM and discrete wavelet transform (DWT) to extract features from MRI images, and then uses a convolutional neural network (CNN) for final diagnosis; finally, through four. The comparison of the results between the two algorithms proves that the CNN algorithm has the better processing power and higher efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.