In large-scale multi-agent systems, the large number of agents and complex game relationship cause great difficulty for policy learning. Therefore, simplifying the learning process is an important research issue. In many multi-agent systems, the interactions between agents often happen locally, which means that agents neither need to coordinate with all other agents nor need to coordinate with others all the time. Traditional methods attempt to use pre-defined rules to capture the interaction relationship between agents. However, the methods cannot be directly used in a large-scale environment due to the difficulty of transforming the complex interactions between agents into rules. In this paper, we model the relationship between agents by a complete graph and propose a novel game abstraction mechanism based on two-stage attention network (G2ANet), which can indicate whether there is an interaction between two agents and the importance of the interaction. We integrate this detection mechanism into graph neural network-based multi-agent reinforcement learning for conducting game abstraction and propose two novel learning algorithms GA-Comm and GA-AC. We conduct experiments in Traffic Junction and Predator-Prey. The results indicate that the proposed methods can simplify the learning process and meanwhile get better asymptotic performance compared with state-of-the-art algorithms.
IntroductionAs many cities have experienced decentralization and evolved from monocentric to polycentric urban spatial structure, polycentric urban development has generated much attention from scholars in the fields of geography and economics (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.