Cluster-based hierarchical routing protocols play an essential role in decreasing the energy consumption of wireless sensor networks (WSNs). A low-energy adaptive clustering hierarchy (LEACH) has been proposed as an application-specific protocol architecture for WSNs. However, without considering the distribution of the cluster heads (CHs) in the rotation basis, the LEACH protocol will increase the energy consumption of the network. To improve the energy efficiency of the WSN, we propose a novel modified routing protocol in this paper. The newly proposed improved energy-efficient LEACH (IEE-LEACH) protocol considers the residual node energy and the average energy of the networks. To achieve satisfactory performance in terms of reducing the sensor energy consumption, the proposed IEE-LEACH accounts for the numbers of the optimal CHs and prohibits the nodes that are closer to the base station (BS) to join in the cluster formation. Furthermore, the proposed IEE-LEACH uses a new threshold for electing CHs among the sensor nodes, and employs single hop, multi-hop, and hybrid communications to further improve the energy efficiency of the networks. The simulation results demonstrate that, compared with some existing routing protocols, the proposed protocol substantially reduces the energy consumption of WSNs.
The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks.
In this paper, an USB host in the embedded system is designed and realized. Using LPC2387 microprocessor as main control chip, this system can send the data to an U flash disk by its on-chip USB controller. Depended on the ZLGIFS(Zhou LiGong's File System), the USB host-control driver, core driver and application program can be completed, and the fIles of U disk can be read and wrote by the USB host. In embedded system area for real-time data acquisition and storage and processing, the above technology has the widespread and practical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.