The emergent processes driving cultural history are a product of complex interactions among large numbers of individuals, determined by difficult-to-quantify historical conditions. To characterize these processes, we have reconstructed aggregate intellectual mobility over two millennia through the birth and death locations of more than 150,000 notable individuals. The tools of network and complexity theory were then used to identify characteristic statistical patterns and determine the cultural and historical relevance of deviations. The resulting network of locations provides a macroscopic perspective of cultural history, which helps us to retrace cultural narratives of Europe and North America using large-scale visualization and quantitative dynamical tools and to derive historical trends of cultural centers beyond the scope of specific events or narrow time intervals.
The widespread adoption of mobile devices that record the communications, social relations, and movements of billions of individuals in great detail presents unique opportunities for the study of social structures and human dynamics at very large scales. This is particularly the case for developing countries where social and economic data can be hard to obtain and is often too sparse for real-time analytics. Here we leverage mobile call log data from Côte d'Ivoire to analyze the relations between its nationwide communications network and the socioeconomic dynamics of its regional economies. We introduce the CallRank indicator to quantify the relative importance of an area on the basis of call records, and show that a region's ratio of in-and outgoing calls can predict its income level. We detect a communication divide between rich and poor regions of Côte d'Ivoire, which corresponds to existing socioeconomic data. Our results demonstrate the potential of mobile communication data to monitor the economic development and social dynamics of low-income developing countries in the absence of extensive econometric and social data. Our work may support efforts to stimulate sustainable economic development and to reduce poverty and inequality.
Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SEMAXIS, a simple yet powerful framework to characterize word semantics using many semantic axes in wordvector spaces beyond sentiment. We demonstrate that SEMAXIS can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SEMAXIS outperforms the state-of-theart approaches in building domain-specific sentiment lexicons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.