Conventional field-effect transistors (FETs) are not expected to satisfy the requirements of future large integrated nanoelectronic circuits because of these circuits' ultra-high power dissipation and because the conventional FETs cannot overcome the subthreshold swing (SS) limit of 60 mV/decade. In this work, the ordinary oxide of the FET is replaced only by a ferroelectric (Fe) polymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TrFE)). Additionally, we employ a two-dimensional (2D) semiconductor, such as MoS 2 and MoSe 2 , as the channel. This 2D Fe-FET achieves an ultralow SS of 24.2 mV/dec over four orders of magnitude in drain current at room temperature; this sub-60 mV/dec switching is derived from the Fe negative capacitance (NC) effect during the polarization of ferroelectric domain switching. Such 2D NC-FETs, realized by integrating of 2D semiconductors and organic ferroelectrics, provide a new approach to satisfy the requirements of next-generation low-energy-consumption integrated nanoelectronic circuits as well as the requirements of future flexible electronics.
We demonstrate a novel all-fiber-optic humidity sensor comprised of a WS2 film overlay on a side polished fiber (SPF). This sensor can achieve optical power variation of up to 6 dB in a relative humidity (RH) range of 35%-85%. In particular, this novel humidity fiber sensor has a linear correlation coefficient of 99.39%, sensitivity of 0.1213 dB/%RH, and a humidity resolution of 0.475%RH. Furthermore, this sensor shows good repeatability and reversibility, and fast response to breath stimulus. This WS2 based all-fiber optic humidity sensor is easy to fabricate, is compatible with pre-established fiber optic systems, and holds great potential in photonics applications such as in all-fiber optic humidity sensing networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.