In this work, we report the quantitative determination of charge accumulation and recombination in an operated QLED using time-resolved electroluminescence (TREL) spectroscopy. As a supplement technique, time-resolved current (TRC) measurement was introduced and simulated using equivalent circuit model with a series resistance, a parallel resistance, and a capacitance. By modeling the key processes in a typical TREL spectra, the stages of delay, rising, and decay can be correlated to the charge accumulations, charge injection and recombination, and charge release and recombination, respectively. In particular, the rising stage can be described using a modified Langevin recombination model. The electroluminescence recombination rate can be derived by fitting the rising stage curves in the TREL spectra, providing an intrinsic parameter of the emissive materials. In all, this work provides a methodology to quantitatively determine the charge accumulation and recombination of an operational QLED device.
This paper proposes an electrostatic-piezoelectric-electromagnetic hybrid vibrational power generator with different frequency broadening schemes. Both the nonlinear frequency broadening mechanisms and the synergized effect of the electrostatic-piezoelectric-electromagnetic hybrid structures are investigated. The structure and performance of the composite generator are optimized to improve the response bandwidth and performance. We propose that the electrostatic power generation module and the electromagnetic power generation module be introduced into the cantilever beam to make the multifunctional cantilever beam, realizing small integrated output loss, high output voltage, and high current characteristics. When the external load of the electrostatic power generation module is 10 kΩ, its peak power can reach 3.6 mW; when the external load of the piezoelectric power generation module is 2 kΩ, its peak power is 2.2 mW; and when the external load of the electromagnetic power generation module is 170 Ω, its peak power is 0.735 mW. This means that under the same space utilization, the performance is improved by 90%. Moreover, an energy management circuit (ECM) at the rear end of the device is added, through the energy conditioning circuit, the device can directly export a 3.3 V DC voltage to supply power to most of the sensing equipment. In this paper, the hybrid generator’s structure and performance are optimized, and the response bandwidth and performance are improved. In general, the primary advantages of the device in this paper are its larger bandwidth and enhanced performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.