A simple paper-based optical biosensor for glucose monitoring was developed. As a glucose biosensing principle, a colorimetric glucose assay, using glucose oxidase (GOx) and horseradish peroxidase (HRP), was chosen. The enzymatic glucose assay was implanted on the analytical paper-based device, which is fabricated by the wax printing method. The fabricated device consists of two paper layers. The top layer has a sample loading zone and a detection zone, which are modified with enzymes and chromogens. The bottom layer contains a fluidic channel to convey the solution from the loading zone to the detection zone. Double-sided adhesive tape is used to attach these two layers. In this system, when a glucose solution is dropped onto the loading zone, the solution is transferred to the detection zone, which is modified with GOx, HRP, and chromogenic compounds through the connected fluidic channel. In the presence of GOx-generated H 2 O 2 , HRP converts chromogenic compounds into the final product exhibiting a blue color, inducing color change in the detection zone. To confirm the changes in signal intensity in the detection zone, the resulting image was registered by a digital camera from a smartphone. To minimize signal interference from external light, the experiment was performed in a specifically designed light-tight box, which was suited to the smartphone. By using the developed biosensing system, various concentrations of glucose samples (0-20 mM) and human serum (5-17 mM) were precisely analyzed within a few minutes. With the developed system, we could expand the applicability of a smartphone to bioanalytical health care.
Low-cost optical particle counters effectively measure particulate matter (PM) mass concentrations once calibrated. Sensor calibration can be established by deriving a linear regression model by performing side-by-side measurements with a reference instrument. However, calibration differences between environmental and occupational settings have not been demonstrated. This study evaluated four commercially available, low-cost PM sensors (OPC-N3, SPS30, AirBeam2, and PMS A003) in both settings. The mass concentrations of three aerosols (salt, Arizona road dust, and Poly-alpha-olefin-4 oil) were measured and compared with a reference instrument. OPC-N3 and SPS30 were highly correlated (r = 0.99) with the reference instrument for all aerosol types in environmental settings. In occupational settings, SPS30, AirBeam2, and PMS A003 exhibited high correlation (>0.96), but the OPC-N3 correlation varied (r = 0.88–1.00). Response significantly (p < 0.001) varied between environmental and occupational settings for most particle sizes and aerosol types. Biases varied by particle size and aerosol type. SPS30 and OPC-N3 exhibited low bias for environmental settings, but all of the sensors showed a high bias for occupational settings. For intra-instrumental precision, SPS30 exhibited high precision for salt for both settings compared to the other low-cost sensors and aerosol types. These findings suggest that SPS30 and OPC-N3 can provide a reasonable estimate of PM mass concentrations if calibrated differently for environmental and occupational settings using site-specific calibration factors.
We developed retroreflective Janus microparticles (RJPs) as a novel optical immunosensing probe for use in a nonspectroscopic retroreflection-based immunoassay. By coating the metals on the hemispherical surface of silica particles, highly reflective RJPs were fabricated. On the basis of the retroreflection principle, the RJPs responded to polychromatic white light sources, in contrast to conventional optical probes, which require specific monochromatic light. The retroreflection signals from RJPs were distinctively recognized as shining dots, which can be intuitively counted using a digital camera setup. Using the developed retroreflective immunosensing system, cardiac troponin I, a specific biomarker of acute myocardial infarction, was detected with high sensitivity. On the basis of the demonstrated features of the retroreflective immunosensing platform, we expect that our approach may be applied for various point-of-care-testing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.