Radix platycodi is the root of Platycodon grandiflorus A. DC, which has been widely used as a food material and for the treatment of a number of chronic inflammatory diseases in traditional oriental medicine. In this study, the anti‑inflammatory effects of the saponins isolated from radix platycodi (PGS) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 murine microglial cells were examined. We also investigated the effects of PGS on LPS‑induced nuclear factor‑κB (NF-κB) activation and phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Following stimulation with LPS, elevated nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokine production was detected in the BV2 microglial cells. However, PGS significantly inhibited the excessive production of NO, PGE2 and pro‑inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner without causing any cytotoxic effects. In addition, PGS suppressed NF-κB translocation and inhibited the LPS-induced phosphorylation of AKT and MAPKs. Our results indicate that the inhibitory effect of PGS on LPS-stimulated inflammatory response in BV2 microglial cells is associated with the suppression of NF-κB activation and the PI3K/AKT and MAPK signaling pathways. Therefore, these findings suggest that PGS may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory responses in activated microglial cells.
Abstract. Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a widely known traditional medicine that has been utilized throughout Asia for several thousand years. Ginseng saponins exert various important pharmacological effects regarding the control of a number of diseases. The aim of the present study was to identify the anti-inflammatory effects of total saponins extracted from ginseng (TSG) on lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 macrophages. The inhibitory effects of TSG on LPS-induced nitric oxide (NO) production and LPS-induced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) protein expression were determined by measuring the levels of nitrite and enzyme-linked immunosorbent assays, respectively. Furthermore, the effects of TSG on the mRNA expression levels and localizations of inducible NO synthase (iNOS), IL-1β and TNF-α, and their upstream signaling proteins, including nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs), were investigated by reverse transcription-polymerase chain reaction and western blotting, respectively. Following stimulation with LPS, elevated levels of NO production were detected in RAW 264.7 cells; however, TSG pretreatment significantly inhibited the production of NO (P<0.05), by suppressing the expression of iNOS. In addition, LPS-stimulated TNF-α and IL-1β production was significantly reduced by TSG (P<0.05). In the LPS-stimulated RAW 264.7 cells, NF-κB was translocated from the cytosol to the nucleus, whilst TSG pretreatment induced the sequestration of NF-κB in the cytosol by inhibiting inhibitor of κB degradation. TSG also contributed to downregulation of MAPKs in LPS-stimulated RAW 264.7 cells. These results suggested that TSG may exert anti-inflammatory activity, and that TSG may be considered a potential therapeutic for the treatment of inflammatory diseases associated with macrophage activation.
BACKGROUND/OBJECTIVESIn this study, the apoptogenic activity and mechanisms of cell death induced by hexane extract of aged black garlic (HEABG) were investigated in human leukemic U937 cells.MATERIALS/METHODSCytotoxicity was evaluated by MTT (3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide) assay. Apoptosis was detected using 4,6-diamidino-2-phenyllindile (DAPI) staining, agarose gel electrophoresis and flow cytometry. The protein levels were determined by Western blot analysis. Caspase activity was measured using a colorimetric assay.RESULTSExposure to HEABG was found to result in a concentration- and time-dependent growth inhibition by induction of apoptosis, which was associated with an up-regulation of death receptor 4 and Fas legend, and an increase in the ratio of Bax/Bcl-2 protein expression. Apoptosis-inducing concentrations of HEABG induced the activation of caspase-9, an initiator caspase of the mitochodrial mediated intrinsic pathway, and caspase-3, accompanied by proteolytic degradation of poly(ADP-ribose)-polymerase. HEABG also induced apoptosis via a death receptor mediated extrinsic pathway by caspase-8 activation, resulting in the truncation of Bid, and suggesting the existence of cross-talk between the extrinsic and intrinsic pathways. However, pre-treatment of U937 cells with the caspase-3 inhibitor, z-DEVD-fmk, significantly blocked the HEABG-induced apoptosis of these cells, and increased the survival rate of HEABG-treated cells, confirming that HEABG-induced apoptosis is mediated through activation of caspase cascade.CONCLUSIONSBased on the overall results, we suggest that HEABG reduces leukemic cell growth by inducing caspase-dependent apoptosis through both intrinsic and extrinsic pathways, implying its potential therapeutic value in the treatment of leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.