In this work, we prepared 90 nm thick TiCT-graphene oxide (GO) membranes laminated on a porous support by mixing GO with TiCT. This process was chosen to prevent the penetration of target molecules through inter-edge defects or voids with poor packing. The lattice period of the prepared membrane was 14.28 Å, as being swelled with water, resulting in an effective interlayer spacing of around 5 Å, which corresponds to two layers of water molecules. The composite membranes effectively rejected dye molecules with hydrated radii above 5 Å, as well as positively charged dye molecules, during pressure-driven filtration at 5 bar. Rejection rates were 68% for methyl red, 99.5% for methylene blue, 93.5% for rose Bengal, and 100% for brilliant blue (hydrated radii of 4.87, 5.04, 5.88, and 7.98 Å, respectively). Additionally, the rejections of composite membrane were compared with GO membrane and TiCT membrane.
Laminated graphene oxide (GO) has promising use as a membrane because of its high permeance, chemical and mechanical stability, as well as the molecular sieving effect of its interlayers. However, the hydrophilic surface of GO, which is highly decorated with oxygen groups, easily induces delamination of stacked GO films in aqueous media, thereby limiting the practical application. To stabilize GO films in aqueous media, we functionalized a polymer support with branched polyethylene-imine (BPEI). BPEI adsorbed intercalated into the stacked GO sheets via diffusion during filtration. The GO/BPEI membrane obtained exhibits high stability during sonication (>1 h duration, 40 kHz frequency) in water within a broad pH range (2-12). In contrast, the GO film spontaneously delaminated upon sonication. Furthermore, BPEI treatment did not affect the filtration performance of the GO film, as evidenced by the high rejection rates (>90%) for the dye molecules methylene blue, rose bengal, and brilliant blue and by their permeation rates of ca. 124, 34.8, 12.2, and 5.1%, respectively, relative to those of a typical GO membrane.
Ruthenium (Ru) is the most widely used metal as an electrocatalyst for nitrogen (N2) reduction reaction (NRR) because of the relatively high N2 adsorption strength for successive reaction. Recently, it has been well reported that the homogeneous Ru‐based metal alloys such as RuRh, RuPt, and RuCo significantly enhance the selectivity and formation rate of ammonia (NH3). However, the metal combinations for NRR have been limited to several miscible combinations of metals with Ru, although various immiscible combinations have immense potential to show high NRR performance. In this study, an immiscible combination of Ru and copper (Cu) is first utilized, and homogeneous alloy nanoparticles (RuCu NPs) are fabricated by the carbothermal shock method. The RuCu homogeneous NP alloys on cellulose/carbon nanotube sponge exhibit the highest selectivity and NH3 formation rate of ≈31% and −73 μmol h−1 cm−2, respectively. These are the highest values of the selectivity and NH3 formation rates among existing Ru‐based alloy metal combinations.
Herein, a new carbon-based graphitic membrane composed of laminated graphitic nanoribbons with a nanometer-scale width and micrometer-scale length, the graphitic nanoribbon membrane, is reported. Compared to the existing graphitic membranes, such as those composed of graphene oxide and carbon nanotubes, the developed membrane exhibits several unique characteristics in pressure-driven systems. First, the short diffusion length through its interlayer and the free volume of its stacked nanoribbons result in high solvent flux regardless of solvent polarity (water: 25-250 L m h bar; toluene: ∼975 L m h bar; hexane: ∼240 L m h bar). The flux value for water is one order of magnitude higher, while that for nonpolar organic solvents is two to three orders of magnitude greater than the corresponding flux values obtained through commercially available nanofiltration membranes. Second, the membrane exhibits good separation performance, particularly with organic dye molecules (∼100%) and trivalent ions (∼60%), maintaining high solvent flux during extended filtration. Finally, the membrane exhibits high stability in various fluids, e.g., 1 M HCl solution, 1 M NaOH solution, toluene, ethanol, and water, as well as under hydraulic pressures of up to 50 bar. Electron microscopy observation and simulation results suggest that such distinctive features of the membrane are related to the entangled thin multilayers of the graphitic nanoribbons, which possibly originate from the high aspect ratio and narrow width of the nanoribbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.