Correlation analysis between food effects on oral drug absorption (food effect) and physicochemical properties is important for efficient drug discovery and contributes to drug design. This study focused on micelle binding and solubilization considering bile micelles in the intestinal fluid. Profiling using about 40 launched drugs demonstrated that those in a high solubilization area (area 1) tended to have a positive food effect, and that drugs exhibiting negative/no food effect tended to coexist in a no/low solubilization area (area 2). In area 1, the solubilization effect by bile micelles was demonstrated quantitatively as an important factor that indicates a positive food effect. In area 2, the relative and quantitative relationships among the membrane permeation rate, dissolution rate, micelle binding and food effect could be clarified by simulation. The improvement of membrane permeability and the suppression of micelle binding are considered to be required to avoid a negative food effect. In conclusion, important factors contributing to the food effect were clarified relatively and quantitatively. Data generated from this profiling may be beneficial to find a solution for negative food effects. Furthermore, this risk assessment of food effects is considered to be a useful tool in rational drug design for drug discovery.
Possible factors of species differences in gastrointestinal drug absorption between cynomolgus monkeys and humans were examined using several commercial drugs. Oral bioavailability (BA) of acetaminophen, furosemide, and propranolol in cynomolgus monkeys was significantly lower than that in humans. From the pharmacokinetic analysis, these drugs were found to show the low fraction absorbed into portal vein (FaFg), suggesting that the low BA in cynomolgus monkeys was attributed mainly to the gastrointestinal absorption processes. The gastric emptying rate (GER) calculated from plasma concentration profiles after oral administration of acetaminophen in cynomolgus monkeys was similar in humans. The gastrointestinal transit time (GITT) in cynomolgus monkeys was only slightly shorter than that in humans. On the other hand, it was demonstrated that the apparent intestinal permeability (Papp) of five drugs to cynomolgus monkey intestine was lower than that to rat intestine; especially propranolol and furosemide showed the remarkably low Papp. The expression levels of mRNAs of efflux transporters analyzed by real-time RT-PCR indicated that mRNA expression levels of MDR1, MRP2, and BCRP in monkey intestine were significantly higher than those in human intestine. This result suggested that low oral absorption of furosemide in cynomolgus monkeys was attributed to the high activities of efflux transporters in its intestinal membrane. Results of in vivo PK analysis clearly showed that FaFg values of propranolol and acetaminophen in cynomolgus monkeys were markedly lower than those in humans. Since propranolol and acetaminophen were the drug with high membrane permeability, it was considered that the high first-pass metabolism in the enterocytes was a main factor of their low FaFg in cynomolgus monkeys. In conclusion, it was demonstrated that the high activities of efflux transporters and/or metabolizing enzymes in the intestinal membrane are possible factors to cause poor oral absorption of drugs in cynomolgus monkeys.
DX-9065a, a newly synthesized anticoagulant that selectively inhibits factor Xa, is a zwitterion and has characteristics of high water solubility and low lipophilicity. We predicted the fraction absorbed (Fa) of DX-9065a to be approximately 15-35% in humans, based on the boundary layer theory using the intestinal perfusion method in rats. However, human oral bioavailability was 2-3% in clinical trials, and the result of actual human bioavailability was lower than that of the predicted Fa. Thus, in this report, the reason for low oral bioavailability of DX-9065a was examined by in vitro and in vivo experiments. The factors affecting oral bioavailability of DX-9065a were not the hepatic first-pass effect, degradation of the drug in intestinal fluid, nor the interaction of the drug with the intestinal mucin. Furthermore, no effect of P-gp efflux was observed. Oral absorption of the drug in rats with bile duct ligation was significantly higher than that in normal rats with bioavailability of 17 and 3%, respectively. It was confirmed that bile acids inhibited DX-9065a absorption because DX-9065a interacted with bile acids to form insoluble complexes. The results suggest that the complex formation of DX-9065a with bile acids in the intestinal tract is an important factor affecting absorption of DX-9065a.
Uptake of the nonabsorbable marker 6-carboxyfluorescein was investigated both free and encapsulated in liposomes as a function of their surface charge and hydrodynamic diameter in rat Peyer's patch and nonpatch tissue. Significant uptake of the marker occurred only when encapsulated in liposomes consisting of at least 25 mol% phosphatidylserine and was highest in Peyer's patches. 6-Carboxyfluorescein encapsulated in liposomes equal to or greater than 374 nm was preferentially taken up by Peyer's patches. There was a trend to higher uptake in lower intestinal segments. These findings were supported by fluorescence microscopic observations. Uptake by Peyer's patches was specific for negatively charged liposomes as judged from competition studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.