The rapidly growing online social networking sites have been infiltrated by a large amount of spam. Spammers are a particular kind of ill-intentioned users who degrade the quality of OSNs information through misusing all possible services provided by OSNs. Social spammers spread many intensive posts/tweets to lure legitimate users to malicious or commercial sites containing malware downloads, phishing, and drug sales. Given the fact that Twitter is not immune towards the social spam problem, different researchers have designed various detection methods, which inspect individual tweets or accounts for the existence of spam contents. Today, social networks are exposed to various threats that exploit their vulnerability. However, although of the high detection rates of the account-based spam detection methods, these methods are not suitable for filtering tweets in the real-time detection because of the need for information from Twitter's servers. At tweet spam detection level, many light features have been proposed for real-time filtering; however, the existing classification models separately classify a tweet without considering the state of previous handled tweets associated with a topic. First, they propose the identification of spam tweet by the security approach based on social honeypots and then they propose a method based on an algorithm "content filtering" in order to detect those that are similar to spam tweet detected by the approach of honeypots. Our approach has greatly improved the quality of abstraction in terms of performance and design. The algorithm is also fast and simple to implement. Experimental results show the stability and accuracy (over 99%), F-measure 98% of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.