The specificity of the immune response relies on processing of foreign proteins and presentation of antigenic peptides at the cell surface. Inhibition of antigen presentation, and the subsequent activation of T-cells, should, in theory, modulate the immune response. The cysteine protease Cathepsin S performs a fundamental step in antigen presentation and therefore represents an attractive target for inhibition. Herein, we report a series of potent and reversible Cathepsin S inhibitors based on dipeptide nitriles. These inhibitors show nanomolar inhibition of the target enzyme as well as cellular potency in a human B cell line. The first X-ray crystal structure of a reversible inhibitor cocrystallized with Cathepsin S is also reported.
We report the discovery of a novel class of glucocorticoid receptor (GR) ligands based on 1,2-dihydroquinoline molecular scaffold. The compounds exhibit good GR binding affinity and selectivity profile against other nuclear hormone receptors.
We report on the nuclear receptor binding affinities, cellular activities of transrepression and transactivation, and anti-inflammatory properties of a quinol-4-one and other A-ring mimetic containing nonsteroidal class of glucocorticoid agonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.