As the full‐touch screen is being implemented in more smart phones, controllability of touch icons need to be considered. Previous research focused on recommendations for absolute key size. However, the size of tactual input on touch interface is not precisely equal to the icon size. This study aims to determine the suitable touchable area to improve touch accuracy. In addition, there was an investigation into the effect of layout (3 × 4, 4 × 5, 5 × 6, and 6 × 8) and icon ratio (0.5, 0.7, and 0.9). To achieve these goals, 40 participants performed a set of serial tasks on the smart phone. Results revealed that the layout and icon ratio were statistically significant on the user response: input offset, hit rate, task completion time, and preference. The 3 × 4 and 4 × 5 layouts were shown to have better performance. The icon ratio of 0.9 was shown to have greater preference. Furthermore, the hit rate (proportion of correct input) of touchable area was estimated through the bivariate normal distribution of input offset. The hit rate could vary, depending on the size of touchable area, which is a rectangle that yields a specific hit rate. A derivation procedure of the touchable area was proposed to guarantee the desirable hit rate. Meanwhile, the locations of the central region indicated a pattern of vertical touch and showed better performance. The users felt more difficulty when approaching the edge of the frame. The results of this study could be used in the design of touch interfaces for mobile devices.
Self-driving vehicles are emerging as a result of technological advances, and the range of human behavior is expanding. The collateral information on driving is increasing, and head-up displays (HUDs) can be coupled with augmented reality displays to convey additional information to drivers in innovative ways. Interference between the actual driving environment and the displayed information can cause distractions. Research is required to find out what information should be displayed and how to properly display it considering the number of information, as well as the location and arrangement of the HUD. This study aims to examine the types of HUD information presentation that enhance the driver’s intuitive understanding. The first experiment identified which information affects drivers more in self-driving conditions in terms of error rate and importance. As a result, information that the drivers consider to be of greater importance or more relevant to their safety was selected. The level of HUD information complexity was assessed in the second experiment. The independent variables were the number of symbols, location of the HUD, and arrangement of the HUD. The results showed that the number of symbols was most affected and that fewer than six should be displayed. Besides, the arrangement of contents was more intuitive when a vertical alignment was used, and the main content should be placed in the center of the windshield area. Finally, ergonomic design guidelines of the information presentation type are proposed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.