The effectiveness of shot peening is mainly determined by the peening coverage. The peening coverage is required to be 100% for current technical standards of shot peening. With the increase of material strength, higher peening coverage is required in shot peening process. However, the influence of high peening coverage on Almen intensity and residual compressive stress is unclear, the difficulty mainly lies in the lack of quantitative description of peening coverage in finite element analysis. To analyze the influence of high peening coverage on Almen intensity and residual compressive stress, firstly an approximate quantitative description of peening coverage based on dent size, the distance of shots and shot numbers is proposed in this study. Based on this quantitative description of peening coverage, the arc height and residual stress of the Almen test are simulated with the finite element method. The simulation results of arc height and saturation curve agree well with that of the Almen test, by which the effectiveness of the quantitative description and FE simulation are proved. The further study indicates that in shot peening processes, the excessive peening coverage doesn't improve Almen intensity and residual compressive stress.
Evaluation of fracture toughness of welded structures has a significant influence on the structural design. However the residual stresses is redistributed while the welded structures is cut for preparing specimens. This study investigated an effect of the welding residual stress redistribution on the impact absorption energy of Charpy specimen. SA516Gr70 steel plate by at the flux cored arc welding (FCAW) and gas tungsten arc welding(GTAW) was cutting. Specimens for Charpy impact testing were taken from the welded plate. Two material removal mechanisms (wire cutting and water jet) were used to make the specimens. Welding residual stress and redistribution residual stress were measured using the XRD (X-Ray Diffraction) method. The amount of redistribution of residual stress depends on the different material removal mechanism. Redistribution of residual stress of reduced the impact absorption energy by 15%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.