Laser-Powder Bed Fusion (L-PBF), an additive manufacturing process, produces a distinctive microstructure that closely resembles the weld metal microstructure but at a much finer scale. The solidification parameters, particularly temperature gradient and solidification rate, are important to study the as-built microstructure. In the present study, a computational framework with meso-scale resolution is developed for L-PBF of Inconel® 718 (IN718), a Ni-base superalloy. The framework combines a powder packing model based on Discrete Element Method and a 3-D transient heat and fluid flow simulation.The latter, i.e.,the molten pool model, capturesthe interaction between laser beam and individual powder particles including free surface evolution, surface tension and evaporation. The solidification parameters,calculated from the temperature fields, are used to assess the solidification morphology and grain size using existing theoretical models.The IN718 coupon built by L-PBF are characterized using optical and scanning electron microscopies. The experimental data of molten pool size and solidification microstructureare compared to the corresponding simulation results.
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Proposed in this work is a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials can be controlled. Through this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.