Dual-metal-site catalysts (DMSCs) are emerging as a new frontier in the field of oxygen reduction reaction (ORR). However, there is a lack of design principles to provide a universal description of the relationship between intrinsic properties of DMSCs and the catalytic activity. Here, we identify the origin of ORR activity and unveil design principles for graphene-based DMSCs by means of density functional theory computations and machine learning (ML). Our results indicate that several experimentally unexplored DMSCs can show outstanding ORR activity surpassing that of platinum. Remarkably, our ML study reveals that the ORR activity of DMSCs is intrinsically governed by some fundamental factors, such as electron affinity, electronegativity, and radii of the embedded metal atoms. More importantly, we propose predictor equations with acceptable accuracy to quantitatively describe the ORR activity of DMSCs. Our work will accelerate the search for highly active DMSCs for ORR and other electrochemical reactions.
Multi-carbazole encapsulation is demonstrated as a simple strategy for the development of solution-processed TADF emitters. The resulting OLED achieves a high external quantum efficiency of 12.2% for non-doped solution-processed fluorescent OLEDs.
Randomized algorithms for low-rank matrix approximation are investigated, with the emphasis on the fixed-precision problem and computational efficiency for handling large matrices. The algorithms are based on the so-called QB factorization, where Q is an orthonormal matrix. Firstly, a mechanism for calculating the approximation error in Frobenius norm is proposed, which enables efficient adaptive rank determination for large and/or sparse matrix. It can be combined with any QB-form factorization algorithm in which B's rows are incrementally generated. Based on the blocked randQB algorithm by P.-G. Martinsson and S. Voronin, this results in an algorithm called randQB EI. Then, we further revise the algorithm to obtain a pass-efficient algorithm, randQB FP, which is mathematically equivalent to the existing randQB algorithms and also suitable for the fixed-precision problem. Especially, randQB FP can serve as a single-pass algorithm for calculating leading singular values, under certain condition. With large and/or sparse test matrices, we have empirically validated the merits of the proposed techniques, which exhibit remarkable speedup and memory saving over the blocked randQB algorithm. We have also demonstrated that the single-pass algorithm derived by randQB FP is much more accurate than an existing single-pass algorithm. And with data from a scenic image and an information retrieval application, we have shown the advantages of the proposed algorithms over the adaptive range finder algorithm for solving the fixed-precision problem.
Previous diffusion tensor imaging (DTI) studies revealed contradictory effects of smoking on fractional anisotropy (FA). Multiple DTI-derived indices may help to deduce the pathophysiological type of white matter (WM) changes and provide more specific biomarkers of WM neuropathology in the whole brain of young smokers. Twenty-three young smokers and 22 age-, education- and gender-matched healthy non-smoking controls participated in this study. Tract-based spatial statistics was employed to investigate the WM microstructure in young smokers by integrating multiple indices, including FA, mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Compared with healthy non-smoking controls, young smokers showed significantly increased FA with increased AD and decreased RD in several brain regions, while no difference in MD was observed. Specifically, the overlapped WM regions with increased FA, increased AD and decreased RD were found in the right posterior limb of the internal capsule, the right external capsule and the right superior corona radiata. Additionally, average FA and RD values in the WM regions mentioned earlier were significantly correlated with pack-years and Fagerström Test for Nicotine Dependence, while no correlation in AD was found. The WM tracts with increased FA may be more associated with RD, rather than AD in young smokers. We suggested that WM properties of several fibres in young smokers may be the biomarker as the cumulative effect and severity of nicotine dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.