Ammoniated aerosols are important for urban air quality, but emissions of the key precursor NH are not well quantified. Mobile laboratory observations are used to characterize fleet-integrated NH emissions in six cities in the U.S. and China. Vehicle NH:CO emission ratios in the U.S. are similar between cities (0.33-0.40 ppbv/ppmv, 15% uncertainty) despite differences in fleet composition, climate, and fuel composition. While Beijing, China has a comparable emission ratio (0.36 ppbv/ppmv) to the U.S. cities, less developed Chinese cities show higher emission ratios (0.44 and 0.55 ppbv/ppmv). If the vehicle CO inventories are accurate, NH emissions from U.S. vehicles (0.26 ± 0.07 Tg/yr) are more than twice those of the National Emission Inventory (0.12 Tg/yr), while Chinese NH vehicle emissions (0.09 ± 0.02 Tg/yr) are similar to a bottom-up inventory. Vehicle NH emissions are greater than agricultural emissions in counties containing near half of the U.S. population and require reconsideration in urban air quality models due to their colocation with other aerosol precursors and the uncertainties regarding NH losses from upwind agricultural sources. Ammonia emissions in developing cities are especially important because of their high emission ratios and rapid motorizations.
A large fraction of atmospheric organic aerosol (OA) originates from natural emissions that are oxidized in the atmosphere to form secondary organic aerosol (SOA). Isoprene (IP) and monoterpenes (MT) are the most important precursors of SOA originating from forests. The climate impacts from OA are currently estimated through parameterizations of water uptake that drastically simplify the complexity of OA. We combine laboratory experiments, thermodynamic modeling, field observations, and climate modeling to (1) explain the molecular mechanisms behind RH‐dependent SOA water‐uptake with solubility and phase separation; (2) show that laboratory data on IP‐ and MT‐SOA hygroscopicity are representative of ambient data with corresponding OA source profiles; and (3) demonstrate the sensitivity of the modeled aerosol climate effect to assumed OA water affinity. We conclude that the commonly used single‐parameter hygroscopicity framework can introduce significant error when quantifying the climate effects of organic aerosol. The results highlight the need for better constraints on the overall global OA mass loadings and its molecular composition, including currently underexplored anthropogenic and marine OA sources.
Abstract. During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmospheric aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O : C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ∼ 50 % RH in the sampling inlets. While the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.