The generation of sound by turbulent boundary-layer flow at low Mach number over a rough wall is investigated by applying a theoretical model that describes the scattering of the turbulence near field into sound by roughness elements. Attention is focused on the numerical method to approximately quantify the absolute level of far-field radiated roughness noise. Models for the source statistics are obtained by scaling smooth-wall data by the increased skin friction velocity and boundary-layer thickness for a rough surface. Numerical integration is performed to determine the roughness noise, and it reproduces the spectral characteristics of the available empirical formula and experimental data. Experiments are conducted to measure the radiated sound from two rough plates in an open jet. The measured noise spectra of the rough plates are above that of a smooth plate in 1-2.5 kHz frequency and exhibit reasonable agreement with the predicted level. Estimates of the roughness noise for a Boeing 757 sized aircraft wing with idealized levels of surface roughness show that in the high-frequency region the sound radiated from surface roughness may exceed that from the trailing edge, and higher overall sound pressure levels are observed for the roughness noise. The trailing edge noise is also enhanced by surface roughness somewhat. A parametric study indicates that roughness height and roughness density significantly affect the roughness noise with roughness height having the dominant effect. The roughness noise directivity varies with different levels of surface roughness.
Cylindrical bodies in uniform flows can be coated with a porous medium as a passive flow and noise control method in an effort to reduce the acoustic effects of vortex shedding. To date, the employed open-cell porous materials typically possess a randomized internal structure. This paper presents the design and validation of a novel 3-D printed structured porous coated cylinder that has significant flexibility, in that the porosity and pores per inch of the porous coating can be modified independently and relatively easily. The performance of the structured porous coating design is compared against porous polyurethane and metal foam with the same coating dimensions and similar pores per inch and porosity via an experimental acoustic investigation, revealing strong similarity in the passive noise control performance of each material type. A numerical comparison illustrates the similarities of the wake structure of the 3-D printed porous coated cylinder to an equivalent Darcy–Forchheimer model simulation that represents a randomized internal porous structure. The performance similarities of these different porous material types indicate that a structured porous geometry can be used to understand the internal flow behavior of the porous medium responsible for reducing the cylinder vortex shedding tone that is otherwise extremely difficult or impossible with typical randomized porous structures. Moreover, significant potential exists for the porous structure to be further optimized or smartly tailored by architectural design for different control purposes, coating geometries and dimensions, and working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.