Kallistatin is a serine proteinase inhibitor which binds to tissue kallikrein and inhibits its activity. The aim of this study is to evaluate if kallistatin has a direct effect on the vasculature and on blood pressure homeostasis. We found that an intravenous bolus injection of human kallistatin caused a rapid, potent, and transient reduction of mean arterial blood pressure in anesthetized rats. Infusion of purified kallistatin (0.07-1.42 nmol/kg) into cannulated rat jugular vein produced a 20-85 mmHg reduction of blood pressure in a dose-dependent manner. Hoe 140, a bradykinin B 2 -receptor antagonist, had no effect on the hypotensive effect of kallistatin yet it abolished the blood pressure-lowering effect of kinin and kallikrein. Relaxation of isolated aortic rings by kallistatin was observed in the presence (ED 50 of 3.4 ϫ 10
The kallikrein-kinin system participates in blood pressure regulation. One of the kallikrein-kinin system components, kallikrein-binding protein, binds to tissue kallikrein and inhibits its activity in vitro. To investigate potential roles of rat kallikrein-binding protein (RKBP) in vivo, we have developed transgenic mice that express an RKBP gene under the control of the mouse metallothionein metal-responsive promoter. Expression of the transgene, RKBP, was detected in the liver, kidney, lung, heart, pancreas, salivary glands, spleen, brain, testis, and adrenal gland at the mRNA and protein levels. Systolic blood pressures of homozygous transgenic mice were 88.5 ؎ 0.8 mm Hg (mean ؎ S.E., n ؍ 19, P < 0.001) for one line and 88.8 ؎ 1.6 mm Hg (mean ؎ S.E., n ؍ 19, P < 0.001) for another, as compared with 100.5 ؎ 0.8 mm Hg (mean ؎ S.E., n ؍ 18) for control mice. Direct blood pressure measurements of these transgenic mice through an arterial cannula showed similar reductions of blood pressure. Intravenous injection of purified RKBP into mice via a catheter produced a dose-dependent reduction of the mean arterial blood pressure. Our findings suggest that RKBP may function as a vasodilator in vivo, independent of regulating the activity of tissue kallikrein.
This study was designed to determine whether the kallikrein-kinin system exerts a protective action in hypertension induced by chronic inhibition of nitric oxide synthase. N omega-nitro-L-arginine methyl ester (L-NAME, 40 mg/100 ml water) was given orally to Sprague-Dawley rats, while controls received regular tap water. Hepatic kininogen mRNA levels in the L-NAME-treated group were 2.9- and 2.5-fold higher at 3 and 4 wk, respectively, compared with control rats, whereas kallikrein-binding protein (KBP) mRNA levels were 82% and 45% of the values found in control rats at 3 and 4 wk, respectively. There was no significant change in hepatic alpha 1-antitrypsin mRNA levels under the same conditions. At 3 and 4 wk post L-NAME treatment, renal kallikrein mRNA levels were 2.5- and 3.4-fold higher than in controls, whereas renal beta-actin mRNA levels were similar between groups. Changes in the transcript levels of renal kallikrein, kininogen, and KBP were consistent with their protein levels. Immunoreactive total kininogen and low-Mr kininogen levels in sera and tissue kallikrein levels in kidney were significantly higher in the L-NAME-treated group, whereas KBP levels in the circulation were lower compared with controls. Systolic blood pressure was increased by 58 +/- 4 mmHg after 4 wk of L-NAME treatment. This effect was enhanced in rats given L-NAME in combination with HOE-140, a bradykinin B2-receptor antagonist, at the dose of 100 micrograms/day ip (79 +/- 5 vs. 58 +/- 4 mmHg, P < 0.05). This difference was confirmed by direct measurement of mean blood pressure (MBP). An intra-arterial bolus injection of 200 ng bradykinin significantly decreased MBP of L-NAME-treated rats, and this effect was blunted in the group treated with the bradykinin antagonist (-29 +/- 3 vs. -9 +/- 2 mmHg, P < 0.01). These results suggest that enhanced kallikrein and kininogen synthesis may have a protective role against the cardiovascular effects induced by chronic inhibition of nitric oxide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.