The doubly-fed induction generator (DFIG) is considered to provide a low-reactance path in the negative-sequence system and naturally comply with requirements on the negative-sequence reactive current in emerging grid codes. This paper shows otherwise and how the control strategy of converters plays a key role in the formation of the active and reactive current components. After investigating the existing control strategies from the perspective of grid code compliance and showing how they fail in addressing emerging requirements on the negative-sequence reactive current, we propose a new coordinated control strategy that complies with reactive current requirements in grid codes in the positive-and negative-sequence systems. The proposed method fully takes advantage of the current and voltage capacities of both the rotor-side converter (RSC) and grid-side converter (GSC), which enables the grid code compliance of the DFIG under unbalanced three-phase voltages due to asymmetrical faults. The mathematical investigations and proposed strategy are validated with detailed simulation models using the Electric Power Research Institute (EPRI) benchmark system. The derived mathematical expressions provide analytical clarifications on the response of the DFIG in the negative-sequence system from the grid perspective.
Pole-to-ground (PTG) fault analysis is of vital importance for high-voltage direct current (HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, the coupling issue between DC transmission lines and the complexity of the structure of DC grid. This paper presents a PTG fault analysis method, which is based on common-and differential-mode (CDM) transformation. Similar to the symmetrical component method in AC system, the transformation decomposes the HVDC grid into CDM networks, which is balanced and decoupled. Then, a transfer impedance is defined and calculated based on the impedance matrices of the CDM networks. With the transfer impedance, analytical expressions of fault characteristics that vary with space and time are obtained. The proposed PTG fault analysis method is applicable to arbitrary HVDC grid topologies, and provides a new perspective to understand the fault mechanism. Moreover, the analytical expressions offer theoretical guidance for PTG fault protection. The validity of the proposed PTG fault analysis method is verified in comparison with the simulation results in PSCAD/EMTDC. Index Terms--High-voltage direct current (HVDC) grid, poleto-ground (PTG) fault, common-and differential-mode(CDM) transformation, DC ciruit breaker (DCCB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.