The Hamiltonian principle is applied to the nonlinear vibration equation of an axially moving conductive beam in the magnetic field with consideration of the axial velocity, axial tension, electromagnetic coupling effect and complex boundary conditions. Nonlinear vibration characteristics of the free vibrating beam under 1:3 internal resonances are studied based on our approach. For beams with one end fixed and the other simply supported, the nonlinear vibration equation is dispersed by the Galerkin method, and the vibration equations are solved by the multiple-scales method. As a result, the coupled relations between the first-order and second-order vibration modes are obtained in the internal resonance system. Firstly, the influence of initial conditions, axial velocity and the external magnetic field strength on the vibration modes is analysed in detail. Secondly, direct numerical calculation on the vibration equations is carried out in order to evaluate the accuracy of the perturbation approach. It is found that through numerical calculations, in the undamped system, the vibration modes are more sensitive to the initial value of vibration amplitude. The amplitude changes of the first-order and second-order modes resulting from the increase of the initial amplitude value of the vibration modes respectively are very special, and present a "reversal behaviour". Lastly, in the damped system, the vibration modes exhibit a trend of coupling attenuation with time. Its decay rate increases when the applied magnetic field strength becomes stronger.
The bifurcation and chaos of a clamped circular functionally graded plate is investigated. Considered the geometrically nonlinear relations and the temperature-dependent properties of the materials, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic excitation and thermal load are derived. The Duffing nonlinear forced vibration equation is deduced by using Galerkin method and a multiscale method is used to obtain the bifurcation equation. According to singularity theory, the universal unfolding problem of the bifurcation equation is studied and the bifurcation diagrams are plotted under some conditions for unfolding parameters. Numerical simulation of the dynamic bifurcations of the FGM plate is carried out. The influence of the period doubling bifurcation and chaotic motion with the change of an external excitation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.