Several enhanced sampling methods such as umbrella sampling or metadynamics rely on the identification of an appropriate set of collective variables. Recently two methods have been proposed to alleviate the task of determining efficient collective variables. One is based on linear discriminant analysis, the other on a variational approach to conformational dynamics, and uses time-lagged independent component analysis. In this paper, we compare the performance of these two approaches in the study of the homogeneous crystallization of two simple metals. We focus on Na and Al and search for the most efficient collective variables that can be expressed as a linear combination of X-ray diffraction peak intensities. We find that the performances of the two methods are very similar. However, the method based on linear discriminant analysis, in its harmonic version, is to be preferred because it is simpler and much less computationally demanding.
Recently, there has been a rapidly growing interest in two-dimensional (2D) transition metal chalcogenide monolayers (MLs) due to their unique magnetic and electronic properties. By using an evolutionary algorithm and first-principles calculations, we report the discovery of a previously unexplored, chemically, energetically, and thermodynamically stable 2D antiferromagnetic (AFM) CrSe ML with a Néel temperature higher than room temperature. Remarkably, we predict an electric field-controllable metal–insulator transition in a van der Waals heterostructure comprised of CrSe ML and ferroelectric Sc2CO2. This tunable transition in the CrSe/Sc2CO2 heterostructure is attributed to the change in the band alignment between CrSe and Sc2CO2 caused by the ferroelectric polarization reversal in Sc2CO2. Our findings suggest that 2D AFM CrSe ML has important potential applications in AFM spintronics, particularly in the gate voltage conducting channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.