The Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), is an important rice, Oryza sativa L., pest in China and difficult to control with conventional pest management. To develop and optimize integrated pest management strategies, efficient and economic artificial diet and rearing protocols are desirable. A new artificial diet based on soybean, Glycine max (L.) Merr., powder and fresh water bamboo, Zizania caduciflora (Turcz.) Hand.-Mazz, was formulated and rearing technique was developed. Fitness parameters including larval development, immature survival, pupal weight, pupation, adult emergence, egg hatchability, and oviposition were measured to evaluate the performance of C. suppressalis fed on the diet over 15 successive generations. C. suppressalis reared on the artificial diet showed better performance with shorter developmental stage, similar larval survival rate and fecundity, and heavier pupae compared with that fed on rice plants and fresh water bamboo. A positive correlation was observed between number of eggs laid per female and number of generations reared on the diet. Larval development time tended to be shortened with successive rearing on the artificial diet. These results indicated that C. suppressalis adapted well to the artificial diet and successive rearing conditions. The diet could serve as a viable alternative to natural host plants for consecutive rearing of the insect. In addition, the diet is inexpensive (US$1.5/1,000 g) and easy to make. The better preserve ability of the diet required only one diet replacement during the rearing process. The successful development of the diet and rearing technique provides a very useful tool for refining stem borer pest management techniques.
The ladybird beetle, Coleomegilla maculata (DeGeer), is a common and abundant predator in many cropping systems. Its larvae and adults are predaceous, feeding on aphids, thrips, lepidopteran larvae and plant tissues, such as pollen. Therefore, this species is exposed to insecticidal proteins expressed in insect-resistant, genetically engineered cotton expressing Cry proteins derived from Bacillus thuringiensis (Bt). A tritrophic bioassay was conduced to evaluate the potential impact of Cry2Ab- and Cry1Ac-expressing cotton on fitness parameters of C. maculata using Bt-susceptible and -resistant larvae of Trichoplusia ni as prey. Coleomegilla maculata survival, development time, adult weight and fecundity were not different when they were fed with resistant T. ni larvae reared on either Bt or control cotton. To ensure that C. maculata were not sensitive to the tested Cry toxins independent from the plant background and to add certainty to the hazard assessment, C. maculata larvae were fed artificial diet incorporated with Cry2Ab, Cry1Ac or both at >10 times higher concentrations than in cotton tissue. Artificial diet containing E-64 was included as a positive control. No differences were detected in any life-table parameters between Cry protein-containing diet treatments and the control diet. In contrast, larvae of C. maculata fed the E-64 could not develop to the pupal stage and the 7-d larval weight was significantly negatively affected. In both feeding assays, the stability and bioactivity of Cry proteins in the food sources were confirmed by ELISA and sensitive-insect bioassays. Our results show that C. maculata is not affected by Bt cotton and is not sensitive to Cry2Ab and Cry1Ac at concentrations exceeding the levels in Bt cotton, thus demonstrating that Bt cotton will pose a negligible risk to C. maculata. More importantly, this study demonstrates a comprehensive system for assessing the risk of genetically modified plants on non-target organisms.
BackgroundRice (Oryza sativa L.), which is a staple food for more than half of the world’s population, is frequently attacked by herbivorous insects, including the rice stem borer, Chilo suppressalis. C. suppressalis substantially reduces rice yields in temperate regions of Asia, but little is known about how rice plants defend themselves against this herbivore at molecular and biochemical level.ResultsIn the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and in metabolic processes in rice plants that had been continuously fed by C. suppressalis larvae for different durations (0, 24, 48, 72, and 96 h). Furthermore, the data were validated using quantitative real-time PCR. There were 4,729 genes and 151 metabolites differently regulated when rice plants were damaged by C. suppressalis larvae. Further analyses showed that defense-related phytohormones, transcript factors, shikimate-mediated and terpenoid-related secondary metabolism were activated, whereas the growth-related counterparts were suppressed by C. suppressalis feeding. The activated defense was fueled by catabolism of energy storage compounds such as monosaccharides, which meanwhile resulted in the increased levels of metabolites that were involved in rice plant defense response. Comparable analyses showed a correspondence between transcript patterns and metabolite profiles.ConclusionThe current findings greatly enhance our understanding of the mechanisms of induced defense response in rice plants against C. suppressalis infestation at molecular and biochemical levels, and will provide clues for development of insect-resistant rice varieties.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0946-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.