Chinese fermented mandarin fish (Siniperca chuatsi) have unique aroma characteristics that are appreciated by local consumers. In this study, electronic nose (E-nose) and gas chromatography–ion mobility spectrometry analyses were combined to establish a volatile fingerprint of fermented mandarin fish during fermentation. Clear separation of the data allowed mandarin fish samples at different fermentation stages to be distinguishing using E-nose analysis. Forty-three volatile organic compounds were identified during fermentation. Additionally, partial least squares discrimination analysis was performed to screen for different VOC metabolites in the fermented mandarin fish; the levels of six VOCs changed significantly during fermentation (variable importance in projection >1; p < 0.05). Three VOCs, i.e., hexanal-D, nonanal, and limonene were identified as potential biomarkers for fermentation. This study provided a theoretical basis for flavor real-time monitoring and quality control of traditional mandarin fish fermentation.
The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood−brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aβ aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood−brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut−brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.