InP-based quantum dot light-emitting diodes (QLEDs), as less toxic than Cd-free and Pb-free optoelectronic devices, have become the most promising benign alternatives for the next generation lighting and display. However, the development of green-emitting InP-based QLEDs still remains a great challenge to the environmental preparation of InP quantum dots (QDs) and superior device performance. Herein, we reported the highly efficient green-emitting InP-based QLEDs regulated by the inner alloyed shell components. Based on the environmental phosphorus tris(dimethylamino)phosphine ((DMA)3P), we obtained highly efficient InP-based QDs with the narrowest full width at half maximum (~35 nm) and highest quantum yield (~97%) by inserting the gradient inner shell layer ZnSexS1−x without further post-treatment. More importantly, we concretely discussed the effect and physical mechanism of ZnSexS1–x layer on the performance of QDs and QLEDs through the characterization of structure, luminescence, femtosecond transient absorption, and ultraviolet photoelectron spectroscopy. We demonstrated that the insert inner alloyed shell ZnSexS1−x provided bifunctionality, which diminished the interface defects upon balancing the lattice mismatch and tailored the energy levels of InP-based QDs which could promote the balanced carrier injection. The resulting QLEDs applying the InP/ZnSe0.7S0.3/ZnS QDs as an emitter layer exhibited a maximum external quantum efficiency of 15.2% with the electroluminescence peak of 532 nm, which was almost the highest record of InP-based pure green-emitting QLEDs. These results demonstrated the applicability and processability of inner shell component engineering in the preparation of high-quality InP-based QLEDs.
High color purity blue quantum dot light‐emitting diodes (QLEDs) have great potential applications in the field of ultra‐high‐definition display. However, the realization of eco‐friendly pure‐blue QLEDs with a narrow emission linewidth for high color purity remains a significant challenge. Herein, a strategy for fabricating high color purity and efficient pure‐blue QLEDs based on ZnSeTe/ZnSe/ZnS quantum dots (QDs) is presented. It is found that by finely controlling the internal ZnSe shell thickness of the QDs, the emission linewidth can be narrowed by reducing the exciton‐longitudinal optical phonon coupling and trap states in the QDs. Additionally, the regulation of the QD shell thickness can suppress the Förster energy transfer between QDs in the QLED emission layer, which will help to reduce the emission linewidth of the device. As a result, the fabricated pure‐blue (452 nm) ZnSeTe QLED with ultra‐narrow electroluminescence linewidth (22 nm) exhibit high color purity with the Commission Internationale de l'Eclairage chromatic coordinates of (0.148, 0.042) and considerable external quantum efficiency (18%). This work provides a demonstration of the preparation of pure‐blue eco‐friendly QLEDs with both high color purity and efficiency, and it is believed that it will accelerate the application process of eco‐friendly QLEDs in ultra‐high‐definition displays.
Background. The aim of this study was to clarify the expression of gamma-aminobutyric acid type A receptor delta subunit (GABRD) gene in pan-cancer and its correlation with patient prognosis, and to investigate the function and possible mechanism of GABRD in colorectal cancer (CRC). Methods. The Cancer Genome Atlas (TCGA) data were used to analyze the expression differences of GABRD in pan-cancer, and the correlation between GABRD and clinical prognosis of various tumors was analyzed by Cox regression method. According to the expression level of GABRD, Gene Function Annotation (GO) and Kyoto Encyclopedia of Genomes (KEGG) functional enrichment analysis were performed on the differentially expressed genes. Expression of GABRD gene and 44 marker genes of three types of RNA modification (m1A (10), m5C (13), m6A (21)) genes in different tumors was observed. Pearson correlation of GABRD gene and marker genes of five immune pathways was measured. Results: TCGA data analysis showed that GABRD was significantly upregulated in various tumor tissues, especially COAD and READCOAD. Survival analysis showed that GABRD was a prognostic protective factor in CRC ( p < 0.001 ). The results of survival nomogram showed that GABRD, age, and tumor (T) lymph node (N) distant metastasis (M) stage were independent prognostic factors, and the survival model C-index was 0.724 (0.644-1). Gene enrichment and functional analysis showed that GABRD may be related to protein digestion and absorption, ECM-receptor interaction, extracellular structure organization, extracellular matrix organization, pancreatic secretion, and antimicrobial humoral response. The expression of GABRD was positively correlated in m1A-, m5C-, and m6A-related genes. The GABRD gene was found in B cell, T cell CD4, T cell CD8, neutrophil, macrophage in TCGA-COAD (N = 282), and TCGA-COADREAD (N = 373). The infiltration level and DC was significantly positively correlated ( p < 0.05 ). Also, the Pearson correlation coefficient is the largest. Conclusion. The involvement of GABRD in the occurrence and development of CRC may be related to protein digestion and absorption, ECM-receptor interaction, extracellular structure organization, extracellular matrix organization, pancreatic secretion, and antimicrobial humoral response. GABRD can be used as a molecular marker for the prognosis of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.