Quantitative spinal cord (SC) magnetic resonance imaging (MRI) is fraught with challenges, among which is the lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for the three main 3T MRI vendors: GE, Philips and Siemens. The protocol provides valuable metrics for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area (CSA) computation, multi-echo gradient echo for gray matter CSA, as well as magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. The spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects, as detailed in the companion paper [REF-DATA]. The spine generic protocol is open-access and its latest version can be found at: https://spinalcordmri.org/protocols. The protocol will serve as a valuable starting point for researchers and clinicians implementing new SC imaging initiatives. Note to the reviewer/editor/publisher: the companion paper is referred to as [REF-DATA]6/52 121 122dealing with cervical myelopathy and MS populations. Applications of the MethodThe proposed protocol is not geared towards a specific disease and it is suitable for imaging WM pathology (demyelination and Wallerian degeneration via axon/myelin-sensitive 122 https://mssociety.ca/about-ms-research/about-our-research-program/research-we-fund/canadian-prospect ive-cohort-study-to-understand-progression-in-ms-canproco 121 https://www.wingsforlife.com/us/research/imaging-spinal-cord-injury-and-assessing-its-predictive-value-th e-inspired-study-2675/ 9/52
Objectives: The aim of this study was to evaluate the linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative values derived from a multidynamic multiecho (MDME) sequence for rapid simultaneous relaxometry. Materials and Methods: The NIST/ISMRM (National Institute of Standards and Technology/International Society for Magnetic Resonance in Medicine) phantom, containing spheres with standardized T1 and T2 relaxation times and proton density (PD), and 10 healthy volunteers, were scanned 10 times on different days and 2 times during the same session, using the MDME sequence, on three 3 T scanners from different vendors. For healthy volunteers, brain volumetry and myelin estimation were performed based on the measured T1, T2, and PD. The measured phantom values were compared with reference values; volunteer values were compared with their averages across 3 scanners. Results: The linearity of both phantom and volunteer measurements in T1, T2, and PD values was very strong (R 2 = 0.973-1.000, 0.979-1.000, and 0.982-0.999, respectively) The highest intrascanner coefficients of variation (CVs) for T1, T2, and PD were 2.07%, 7.60%, and 12.86% for phantom data, and 1.33%, 0.89%, and 0.77% for volunteer data, respectively. The highest interscanner CVs of T1, T2, and PD were 10.86%, 15.27%, and 9.95% for phantom data, and 3.15%, 5.76%, and 3.21% for volunteer data, respectively. Variation of T1 and T2 tended to be larger at higher values outside the range of those typically observed in brain tissue.The highest intrascanner and interscanner CVs for brain tissue volumetry were 2.50% and 5.74%, respectively, for cerebrospinal fluid. Conclusions: Quantitative values derived from the MDME sequence are overall robust for brain relaxometry and volumetry on 3 T scanners from different vendors. Caution is warranted when applying MDME sequence on anatomies with relaxometry values outside the range of those typically observed in brain tissue.
The symptoms of idiopathic normal pressure hydrocephalus (iNPH) can be improved by shunt surgery, but prediction of treatment outcome is not established. We investigated changes of the corticospinal tract (CST) in iNPH before and after shunt surgery by using diffusion microstructural imaging, which infers more specific tissue properties than conventional diffusion tensor imaging. Two biophysical models were used: neurite orientation dispersion and density imaging (NODDI) and white matter tract integrity (WMTI). In both methods, the orientational coherence within the CSTs was higher in patients than in controls, and some normalization occurred after the surgery in patients, indicating axon stretching and recovery. The estimated axon density was lower in patients than in controls but remained unchanged after the surgery, suggesting its potential as a marker for irreversible neuronal damage. In a Monte-Carlo simulation that represented model axons as undulating cylinders, both NODDI and WMTI separated the effects of axon density and undulation. Thus, diffusion MRI may distinguish between reversible and irreversible microstructural changes in iNPH. Our findings constitute a step towards a quantitative image biomarker that reflects pathological process and treatment outcomes of iNPH.
The functional characteristics of the left inferior longitudinal fasciculus (ILF) remain unclear. The present study describes a case of a right-handed 74-year-old woman with a brain tumor who showed marked deterioration in object naming ability after invasion of the tumor into the medial region of the left posterior (middle and inferior) temporal lobe just beside the atrium of the lateral ventricle. Diffusion tensor imaging showed possible interruption of the left ILF after invasion of tumor at this site. By contrast, the left superior longitudinal fasciculus (SLF) remained intact after invasion of tumor, and the inferior fronto-occipital fasciculus (IFOF) was already disrupted prior to tumor invasion. These observations indicate that intact ILF function may be required for object naming ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.