Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Due to the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOC), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously we showed that the parent nucleoside of remdesivir, GS-441524, possesses potent anti-SARS-CoV-2 activity. Herein, we report that esterification of the 5′-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5′-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 pandemic, is rapidly evolving. Due to the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOC), including the currently most prevalent Delta variant, orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously we showed that adenosine analogue 69-0 (also known as GS-441524), possesses potent anti-SARS-CoV-2 activity. Herein, we report that esterification of the 5-hydroxyl moieties of 69-0 markedly improved the antiviral potency. The 5-hydroxyl -isobutyryl prodrug, ATV006, showed excellent oral bioavailability in rats and cynomolgus monkeys and potent antiviral efficacy against different VOCs of SARS-CoV-2 in cell culture and three mouse models. Oral administration of ATV006 significantly reduced viral loads, alleviated lung damage and rescued mice from death in the K18-hACE2 mouse model challenged with the Delta variant. Moreover, ATV006 showed broad antiviral efficacy against different mammal-infecting coronaviruses. These indicate that ATV006 represents a promising oral drug candidate against SARS-CoV-2 VOCs and other coronaviruses.
Quinolin‐2‐one represents an important and valuable chemical motif that possesses a wide variety of biological activities; however, the anti‐influenza activities of quinolin‐2‐one‐containing compounds were rarely reported. Herein, we describe the screening and identification of 3‐aryl‐quinolin‐2‐one derivatives as a novel class of antiviral agents. The 3‐aryl‐quinolinone derivatives were synthesized via an efficient copper‐catalyzed reaction cascade that we previously developed. Using this synthetic method, preliminary structure–activity relationships of this scaffold against the influenza A virus infection were systematically explored. The most potent compound 34 displayed IC50 values of 2.14 and 4.88 μM against the replication of H3N2 (A/HK/8/68) and H1N1 (A/WSN/33) strains, respectively, without apparent cytotoxicity on MDCK cells. We further demonstrated that 27 and 34 potently inhibited the plaque formation of the IAV, rendering this scaffold attractive for pursuing novel anti‐influenza agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.