Due to use of different parametric models for establishing species sensitivity distributions (SSDs), comparison of water quality criteria (WQC) for metals of the same group or period in the periodic table is uncertain and results can be biased. To address this inadequacy, a new probabilistic model, based on non-parametric kernel density estimation was developed and optimal bandwidths and testing methods are proposed. Zinc (Zn), cadmium (Cd), and mercury (Hg) of group IIB of the periodic table are widespread in aquatic environments, mostly at small concentrations, but can exert detrimental effects on aquatic life and human health. With these metals as target compounds, the non-parametric kernel density estimation method and several conventional parametric density estimation methods were used to derive acute WQC of metals for protection of aquatic species in China that were compared and contrasted with WQC for other jurisdictions. HC5 values for protection of different types of species were derived for three metals by use of non-parametric kernel density estimation. The newly developed probabilistic model was superior to conventional parametric density estimations for constructing SSDs and for deriving WQC for these metals. HC5 values for the three metals were inversely proportional to atomic number, which means that the heavier atoms were more potent toxicants. The proposed method provides a novel alternative approach for developing SSDs that could have wide application prospects in deriving WQC and use in assessment of risks to ecosystems.
Transgene insertions might have unintended side effects on the transgenic host, both crop and hybrids with wild relatives that harbor transgenes. We employed proteomic approaches to assess protein abundance changes in seeds from Bt-transgenic oilseed rape (Brassica napus) and its hybrids with wild mustard (B. juncea). A total of 24, 15 and 34 protein spots matching to 23, 13 and 31 unique genes were identified that changed at least 1.5 fold (p < 0.05, Student’s t-test) in abundance between transgenic (tBN) and non-transgenic (BN) oilseed rape, between hybrids of B. juncea (BJ) × tBN (BJtBN) and BJ × BN (BJBN) and between BJBN and BJ, respectively. Eight proteins had higher abundance in tBN than in BN. None of these proteins was toxic or nutritionally harmful to human health, which is not surprising since the seeds are not known to produce toxic proteins. Protein spots varying in abundance between BJtBN and BJBN seeds were the same or homologous to those in the respective parents. None of the differentially-accumulated proteins between BJtBN and BJBN were identical to those between tBN and BN. Results indicated that unintended effects resulted from transgene flow fell within the range of natural variability of hybridization and those found in the native host proteomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.