We report a simple microfluidic process to prepare multilayer poly(ionic liquid) (PIL) microcapsules via sequential liquid–liquid phase separation within ternary emulsion droplets followed by the photopolymerization of ionic liquid (IL) monomer-rich phases. Emulsion droplets, consisting of a hydrophobic IL monomer, water, and N,N-dimethylformamide (DMF), are first formed in a microfluidic device, and the droplets are then carried by a continuous aqueous phase. Subsequently, DMF diffuses from the droplets into the continuous aqueous phase, resulting in the sequential internal phase separation of the IL-rich and water-rich phases, generating multilayer emulsion droplets comprising alternating IL-rich and water-rich phases. The number of droplet layers was controlled from one to five by varying the initial composition of the dispersed phase. Furthermore, under the conditions where higher-order emulsion droplets were formed, the time scale between the onset of phase separation and the formation of each layer became shorter. Additionally, the IL-rich phases in the multilayer emulsion droplets were easily solidified via photopolymerization, resulting in PIL microcapsules with multilayer structures. Anion exchange of the obtained PIL microcapsules effectuated their transition from a hydrophobic to a hydrophilic nature, resulting in PIL microcapsules with diverse swelling properties and PIL layer permeability across various solvents. We believe that the sequential phase separation system observed in the ternary emulsion droplets can pave the way for the design of PIL-based colloidal materials with thermodynamically nonequilibrium structures, thereby extending their application in functional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.