Robot motion generation methods using machine learning have been studied in recent years. Bilateral controlbased imitation learning can imitate human motions using force information. By means of this method, variable speed motion generation that considers physical phenomena such as the inertial force and friction can be achieved. Previous research demonstrated that the complex relationship between the force and speed can be learned by using a neural network model. However, the previous study only focused on a simple reciprocating motion. To learn the complex relationship between the force and speed more accurately, it is necessary to learn multiple actions using many joints. In this paper, we propose a variable speed motion generation method for multiple motions. We considered four types of neural network models for the motion generation and determined the best model for multiple motions at variable speeds. Subsequently, we used the best model to evaluate the reproducibility of the task completion time for the input completion time command. The results revealed that the proposed method could change the task completion time according to the specified completion time command in multiple motions.
The generation of robot motions in the real world is difficult by using conventional controllers alone and requires highly intelligent processing. In this regard, learning-based motion generations are currently being investigated. However, the main issue has been improvements of the adaptability to spatially varying environments, but a variation of the operating speed has not been investigated in detail. In contact-rich tasks, it is especially important to be able to adjust the operating speed because a nonlinear relationship occurs between the operating speed and force (e.g., inertial and frictional forces), and it affects the results of the tasks. Therefore, in this study, we propose a method for generating variable operating speeds while adapting to spatial perturbations in the environment. The proposed method can be adapted to nonlinearities by utilizing a small amount of motion data. We experimentally evaluated the proposed method by erasing a line using an eraser fixed to the tip of the robot as an example of a contact-rich task. Furthermore, the proposed method enables a robot to perform a task faster than a human operator and is capable of operating close to the control bandwidth.
Robots are expected to replace menial tasks such as housework. Some of these tasks include nonprehensile manipulation performed without grasping objects. Nonprehensile manipulation is very difficult because it requires considering the dynamics of environments and objects. Imitating complex behaviors requires a large number of human demonstrations. In this study, a self-supervised learning that considers motion speed to achieve variable speed for nonprehensile manipulation is proposed. The proposed method collects and fine-tunes only successful actions among the data obtained during autonomous operations. By fine-tuning the successful data using speed labels, the robot learns the dynamics among itself, its environment, and objects. We experimented with the task of scooping and transporting pancakes using the neural network model trained on 24 human-collected training data. The proposed method significantly improved the success rate from 40.2% to 85.7%, and succeeded more than 75% for other objects.
Wiping the surface of an object with a robot is necessary to automate various tasks such as cleaning and polishing. However, it is very difficult to move contact points while maintaining the appropriate force with position control. It is because the force response when contact with the object varies greatly with slight differences in the positional relationship, it is greatly affected by errors in the shape measurement and positional errors in the robot's motion. To achieve this, force control that directly handles the force response is necessary. In this study, we used bilateral control-based imitation learning to learn wiping motions for several types of bowls as objects with various 3D curved surface shapes, and verified their performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.