BackgroundThe goal of metabolomics analyses is a comprehensive and systematic understanding of all metabolites in biological samples. Many useful platforms have been developed to achieve this goal. Gas chromatography coupled to mass spectrometry (GC/MS) is a well-established analytical method in metabolomics study, and 200 to 500 peaks are routinely observed with one biological sample. However, only ~100 metabolites can be identified, and the remaining peaks are left as "unknowns".ResultWe present an algorithm that acquires more extensive metabolite information. Pearson's product-moment correlation coefficient and the Soft Independent Modeling of Class Analogy (SIMCA) method were combined to automatically identify and annotate unknown peaks, which tend to be missed in routine studies that employ manual processing.ConclusionsOur data mining system can offer a wealth of metabolite information quickly and easily, and it provides new insights, particularly into food quality evaluation and prediction.
In metabolomics studies, gas chromatography coupled with time-of-flight or quadrupole mass spectrometry has frequently been used for the non-targeted analysis of hydrophilic metabolites. However, because the analytical platform employs the deconvolution method to extract single-metabolite information from co-eluted peaks and background noise, the extracted peak is artificial product depending on the mathematical parameters and is not completely compatible with the pure component obtained by analyzing a standard compound. Moreover, it has insufficient ability for quantitative metabolomics. Therefore, highly sensitive and selective methods capable of pure peak extraction without any complicated mathematical techniques are needed. For this purpose, we have developed a novel analytical method using gas chromatography coupled with triple-quadrupole mass spectrometry (GC-QqQ/MS). We developed a selected reaction monitoring (SRM) method to analyze the trimethylsilyl derivatives of 110 metabolites, using electron ionization. This methodology enables us to utilize two complementary techniques-non-targeted and widely targeted metabolomics in the same sample preparation protocol, which would facilitate the formulation or verification of novel hypotheses in biological sciences. The GC-QqQ/MS analysis can accurately identify a metabolite using multichannel SRM transitions and intensity ratios in the analysis of living organisms. In addition, our methodology offers a wide dynamic range, high sensitivity, and highly reproducible metabolite profiles, which will contribute to the biomarker discoveries and quality evaluations in biology, medicine, and food sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.