Probiotics are living microorganisms that provide numerous health benefits for their host. Probiotics have various effects on the body; for example, they change gut microbiota, improve the integrity of the epithelial barrier and have anti-inflammatory effects. The use of probiotic supplements that are based on lactic acid bacteria and bifidobacteria is one of the approaches that are used to balance gut microflora. In our study, we evaluated the effects of supplements, which were based on members of the Lactobacillaceae family and bifidobacteria, on the gut microbiome of healthy mice using the 16S rRNA sequencing method. The data that were obtained demonstrated that when mice received the probiotic supplements, statistically significant changes occurred in the composition of the microbiome at the phylum level, which were characterized by an increase in the number of Actinobacteriota, Bacteroidota, Verrucomicrobia and Proteobacteria, all of which have potentially positive effects on health. At the generic level, a decrease in the abundance of members of the Nocardioides, Helicobacter and Mucispirillum genus, which are involved in inflammatory processes, was observed for the group of mice that was fed with lactic acid bacteria. For the group of mice that was fed with bifidobacteria, a decrease was seen in the number of members of the Tyzzerella and Akkermansia genus. The results of our study contribute to the understanding of changes in the gut microbiota of healthy mice under the influence of probiotics. It was shown that probiotics that are based on members of the Lactobacillaceae family have a more positive effect on the gut microbiome than probiotics that are based on bifidobacteria.
Determining the taxonomic composition of microbial consortia of the piglet intestine is of great importance for pig production. However, knowledge on the variety of the intestinal microbiome in newborn piglets is limited. Piglet diarrhea is a serious gastrointestinal disease with a high morbidity and mortality that causes great economic damage to the pig industry. In this study, we investigated the microbiome of various sections of the piglet intestine and compared the microbiome composition of healthy and diarrheal piglets using high-throughput sequencing of the 16S rRNA gene. The results showed that bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides dominated in the rectum. Comparing the microbiome composition of healthy and diarrheal piglets revealed a reduced number of Lactobacillus bacteria as a hallmark of diarrhea, as did an increased content of representatives of the Escherichia-Shigella genus and a reduced number of Bacteroides, which indicates the contribution of these bacteria to the development of diarrhea in piglets. The relative abundance of Enterococcus bacteria was higher in the diarrhea group. Although some bacteria of this genus are commensals, a small number of species may be associated with the development of diarrhea in piglets. Therefore, our results indicate that the gut microbiome may be an important factor in the development of diarrhea in piglets.
Mastitis is the most common disease for cattle, causing great economic losses for the global dairy industry. Recent studies indicate the multi-agent and microbiome diversity of this disease. To understand the nature of mastitis and investigate the role of the microbiome in the development of pathologies in the udder of bovines, we performed NGS sequencing of the 16S rRNA gene of cow’s milk with pathologies of the udder. The obtained data show a significant increase in the Cutibacterium, Blautia, Clostridium sensu stricto 2, Staphylococcus, Streptococcus and Microbacterium genera for groups of cows with udder pathologies. Increasing relative abundance of the Staphylococcus and Streptococcus genera was associated with subclinical mastitis. Our data show that a relative increase in abundance of the Staphylococcus and Microbacterium genera may be an early sign of infection. We have shown, for the first time, an increase in the Colidextribacter, Paeniclostridium and Turicibacter genera in groups of cows with mastitis. These results expand our understanding of the role of the microbiome in the development of bovine mastitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.