Wild birds are monitored with the important objectives of identifying their habitats and estimating the size of their populations. Especially in the case of migratory bird, they are significantly recorded during specific periods of time to forecast any possible spread of animal disease such as avian influenza. This study led to the construction of deep-learning-based object-detection models with the aid of aerial photographs collected by an unmanned aerial vehicle (UAV). The dataset containing the aerial photographs includes diverse images of birds in various bird habitats and in the vicinity of lakes and on farmland. In addition, aerial images of bird decoys are captured to achieve various bird patterns and more accurate bird information. Bird detection models such as Faster Region-based Convolutional Neural Network (R-CNN), Region-based Fully Convolutional Network (R-FCN), Single Shot MultiBox Detector (SSD), Retinanet, and You Only Look Once (YOLO) were created and the performance of all models was estimated by comparing their computing speed and average precision. The test results show Faster R-CNN to be the most accurate and YOLO to be the fastest among the models. The combined results demonstrate that the use of deep-learning-based detection methods in combination with UAV aerial imagery is fairly suitable for bird detection in various environments.
Crop monitoring is a very important area of precision agriculture and smart farming. Through an accurate monitoring, it is possible to more efficiently manage the irrigation, fertilization, and pest control. In this study, we propose aerial thermal image calibration method and thermal image processing techniques to analyze the water stress level of fruit trees under different irrigation conditions. The calibration was performed using Gaussian process regression, and it was demonstrated as an appropriate regression method because it satisfied all requirements including the residuals’ normality, independence, and homoscedasticity. In addition, an appropriate image processing technique was necessary to selectively extract only the canopy temperature from the aerial thermal images, while excluding irrelevant elements such as the soil and other objects. For the image processing techniques, three methods (Gaussian mixture model, Otsu binarization algorithm, and Otsu binarization algorithm after Gaussian blurring) were employed. The Gaussian mixture model provided the highest accuracy and stable results for the extraction of the canopy temperature. After the aerial thermal images were subjected to calibration and image processing, the degree above nonstressed canopy (DANS) water stress index was calculated for the fruit trees under different water supply conditions. The distribution of the DANS water stress index was similar to the distribution of the canopy temperature and inversely proportional to the amount of supplied water content. Therefore, we expect that the DANS water stress index, calculated using the calibration and image processing techniques proposed in this study, can be a reliable measure for the estimation of the water stress of crops for the application of aerial infrared techniques to remote sensing.
In this study, a portable and large-area blackbody system was developed following a series of processes including design, computational analysis, fabrication, and experimental analysis and evaluation. The blackbody system was designed to be lightweight (5 kg), and its temperature could exceed the ambient temperature by up to 15 °C under operation. A carbon-fiber-based heat source was used to achieve a uniform temperature distribution. A heat shield fabricated from an insulation material was embedded at the opposite side of the heating element to minimize heat loss. A prototype of the blackbody system was fabricated based on the design and transient coupled electro-thermal simulation results. The operation performance of this system, such as the thermal response, signal transfer function, and noise equivalent temperature difference, was evaluated by employing an infrared imaging system. In addition, emissivity was measured during operation. The results of this study show that the developed portable and large-area blackbody system can be expected to serve as a reliable reference source for the calibration of aerial infrared images for the application of aerial infrared techniques to remote sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.