Visible light is much more available and less harmful than ultraviolet light, but ultralong organic phosphorescence (UOP) with visible-light excitation remains a formidable challenge. Here, a concise chemical approach is provided to obtain bright UOP by tuning the molecular packing in the solid state under irradiation of available visible light, e.g., a cell phone flashlight under ambient conditions (room temperature and in air). The excitation spectra exhibit an obvious redshift via the incorporation of halogen atoms to tune intermolecular interactions. UOP is achieved through H-aggregation to stabilize the excited triplet state, with a high phosphorescence efficiency of 8.3% and a considerably long lifetime of 0.84 s. Within a brightness of 0.32 mcd m that can be recognized by the naked eye, UOP can last for 104 s in total. Given these features, ultralong organic phosphorescent materials are used to successfully realize dual data encryption and decryption. Moreover, well-dispersed UOP nanoparticles are prepared by polymer-matrix encapsulation in an aqueous solution, and their applications in bioimaging are tentatively being studied. This result will pave the way toward expanding metal-free organic phosphorescent materials and their applications.
Monoamine oxidases have two functionally distinct but structurally similar isoforms (MAO‐A and MAO‐B). The ability to differentiate them by using fluorescence detection/imaging technology is of significant biological relevance, but highly challenging with available chemical tools. Herein, we report the first MAO‐A‐specific two‐photon fluorogenic probe (F1), capable of selective imaging of endogenous MAO‐A enzymatic activities from a variety of biological samples, including MAO‐A‐expressing neuronal SY‐SY5Y cells, the brain of tumor‐bearing mice and human Glioma tissues by using two‐photon fluorescence microscopy (TPFM) with minimal cytotoxicity.
Two-photon fluorescence lifetime imaging (TP-FLIM) not only permits imaging deep inside the tissues with precise spatial manipulation but also circumvents tissue autofluorescence, holding tremendous promise in molecular imaging. However, the serious lack of suitable contrast agents with long fluorescence lifetime and efficient two-photon absorption (TPA) greatly limits the advance of TP-FLIM. This study reports a simple approach to fabricate water-soluble organic semiconducting nanoparticles [thioxanthone (TXO) NPs] with ultralong fluorescence lifetime and efficient TPA for in vivo TP-FLIM. The approach utilizes the aggregation of a specifically selected thermally activated delayed fluorescence (TADF) fluorophore to prolong its fluorescence lifetime. Encapsulating the TADF fluorophore within an amphiphilic copolymer not only maximizes its aggregation but also obtains TXO NPs with efficient TPA. Importantly, as-prepared TXO NPs exhibit a considerably long fluorescence lifetime at a magnitude of 4.2 µs, which is almost 1000 times larger than that of existing organic contrast agents. Moreover, such long fluorescence lifetime is almost oxygen-inert, readily realizing both in vitro and in vivo TP-FLIM. This work may set valuable guidance for designing organic semiconducting materials with ultralong fluorescence lifetimes to fulfill the potential of FLIM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.