Aims: Cerebrovascular impairment contributes to the pathogenesis of Alzheimer's disease (AD). However, it still lacks effective intervention in clinical practice. Here, we investigated the efficacy of electroacupuncture (EA) in cerebrovascular repair in 3xTg-AD mice and its mechanism.Methods: 3xTg-AD mice were employed to evaluate the protective effect of EA at ST36 acupoint (EAST36). Behavioral tests were performed to assess neurological disorders. Laser speckle contrast imaging, immunostaining, and Western blot were applied to determine EAST36-boosted cerebrovascular repair. The mechanism was explored in 3xTg mice and endothelial cell cultures by melatonin signaling modulation.Results: EAST36 at 20/100 Hz effectively alleviated the olfactory impairment and anxiety behavior and boosted cerebrovascular repair in AD mice. EAST36 attenuated cerebral microvascular degeneration in AD mice by modulating endothelial cell viability and injury. Consequently, the Aβ deposits and neural damage in AD mice were reversed after EAST36. Mechanistically, we revealed that EAST36 restored melatonin levels in AD mice. Melatonin supplement mimicked the EAST36 effect on cerebrovascular protection in AD mice and endothelial cell cultures. Importantly, blockage of melatonin signaling by antagonist blunted EAST36-induced cerebrovascular recovery and subsequent neurological improvement.Conclusions: These findings provided strong evidence to support EAST36 as a potential nonpharmacological therapy against cerebrovascular impairment in AD. Further study is necessary to better understand how EAST36 treatment drives melatonin signaling.
We investigate and compare the characteristics of erbium-doped superfluorescent fiber sources (SFS's) obtained from the use of different flattening techniques in double-pass forward (DPF) and double-pass backward (DPB) configurations. The intrinsic flattening technique consists of optimizing the length of the erbium-doped fiber. The extrinsic flattening methods include the addition of a samarium-doped fiber (SDF) and a fiber-Bragg-grating (FBG) notched filter at the output end separately to shape the SFS spectrum. Although intrinsically flattened DPF and DPB SFS's have a large output power of >34 mW, they are accompanied by an approximately 3-dB ripple. The FBG-flattened DPF and DPB SFS's can achieve a wide linewidth of 35 nm with a small ripple of approximately 1.7 dB and better pump-power-dependent mean-wavelength stability; SDF-flattened DPF and DPB SFS's are inferior because of the SDF's lossy spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.