Vip3Aa, a soluble protein produced by certain Bacillus thuringiensis strains, is capable of inducing apoptosis in Sf9 cells. However, the apoptosis mechanism triggered by Vip3Aa is unclear. In this study, we found that Vip3Aa induces mitochondrial dysfunction, as evidenced by signs of collapse of mitochondrial membrane potential, accumulation of reactive oxygen species, release of cytochrome c, and caspase-9 and -3 activation. Meanwhile, our results indicated that Vip3Aa reduces the ability of lysosomes in Sf9 cells to retain acridine orange. Moreover, pretreatment with Z-Phe-Tyr-CHO (a cathepsin L inhibitor) or pepstatin (a cathepsin D inhibitor) increased Sf9 cell viability, reduced cytochrome c release, and decreased caspase-9 and -3 activity. In conclusion, our findings suggested that Vip3Aa promotes Sf9 cell apoptosis by mitochondrial dysfunction, and lysosomes also play a vital role in the action of Vip3Aa.
Summary Gene expression is tightly controlled by transcription factors and RNA regulatory elements, including trans‐acting small RNAs, cis‐regulatory riboswitches and ribosome‐dependent ribo‐regulators. In the present study, we demonstrated that a ribosome‐dependent ribo‐regulator and two mistranslation products co‐regulate rppA (encoding a ribosomal protection protein) expression in Bacillus thuringiensis BMB171. The leader RNA of the rppA gene controls rppA expression via translation of leader ORF1 resident in its sequence. In the presence of chloramphenicol, a +1 frameshift product (ORF2) and a stop codon readthrough product (ORF3) of ORF1 emerged. ORF3 exerted a negative effect on rppA expression. By contrast, the ORF2 promoted rppA expression. The regulation mode identified in the present study will lead to a deeper understanding of bacterial gene expression.
With the rapid development of synthetic biology in recent years, particular attention has been paid to RNA devices, especially riboswitches, because of their significant and diverse regulatory roles in prokaryotic and eukaryotic cells. Due to the limited performance and context-dependence of riboswitches, only a few of them (such as theophylline, tetracycline and ciprofloxacin riboswitches) have been utilized as regulatory tools in biotechnology. In the present study, we demonstrated that a ribosomedependent ribo-regulator, LRR, discovered in our previous work, exhibits an attractive regulatory performance. Specifically, it offers a 60-fold change in expression in the presence of retapamulin and a low level of leaky expression of about 1-2% without antibiotics. Moreover, LRR can be combined with different promoters and performs well in Bacillus thuringiensis, B. cereus, B. amyloliquefaciens, and B. subtilis. Additionally, LRR also functions in the Gram-negative bacterium Escherichia coli. Furthermore, we demonstrate its ability to control melanin metabolism in B. thuringiensis BMB171. Our results show that LRR can be applied to regulate gene expression, construct genetic circuits and tune metabolic pathways, and has great potential for many applications in synthetic biology.
Background: Vip3Aa is an insecticidal protein secreted by some Bacillus thuringiensis strains during vegetative growth. It has excellent insecticidal activity, its mechanism of action is different from that of Cry protein, and it can delay the development of pest resistance. To date, Vip3Aa has been widely used in genetically modified Bt crops. However, the secretion of Vip3Aa by industrial production strains is usually very low. Moreover, most of the Vip3Aa in the medium is degraded by proteases, limiting its application as a biopesticide.Results: We report a novel constitutive strong promoter from B. thuringiensis, P rsi , which directs the abundant expression of vip3Aa in B. thuringiensis BMB171. Furthermore, to reduce the degradation of Vip3Aa caused by proteases, we constructed B. thuringiensis mutants in which different protease genes were knocked out. We found that the degradation of Vip3Aa was greatly inhibited and its yield was significantly improved in a mutant that lacked all three protease genes. Conclusion: Our results provide a new strategy to enhance the production of Vip3Aa in B. thuringiensis and have reference value for the research and development of novel bioinsecticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.