Hyperspectral image (HSI) classification has become one of the most significant tasks in the field of hyperspectral analysis. However, classifying each pixel in HSI accurately is challenging due to the curse of dimensionality and limited training samples. In this paper, we present an HSI classification architecture called camera spectral response network (CSR-Net), which can learn the optimal camera spectral response (CSR) function for HSI classification problems and effectively reduce the spectral dimensions of HSI. Specifically, we design a convolutional layer to simulate the capturing process of cameras, which learns the optimal CSR function for HSI classification. Then, spectral and spatial features are further extracted by spectral and spatial attention modules. On one hand, the learned CSR can be implemented physically and directly used to capture scenes, which makes the image acquisition process more convenient. On the other hand, compared with ordinary HSIs, we only need images with far fewer bands, without sacrificing the classification precision and avoiding the curse of dimensionality. The experimental results of four popular public hyperspectral datasets show that our method, with only a few image bands, outperforms state-of-the-art HSI classification methods which utilize the full spectral bands of images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.