Abstract-A quadrotor unmanned aerial vehicle (UAV) should have the ability to perform real-time target tracking and path planning simultaneously even when the target enters unstructured scenes, such as groves or forests. To accomplish this task, a novel system framework is designed and proposed to accomplish simultaneous moving target tracking and path planning by a quadrotor UAV with an onboard embedded computer, vision sensors, and a two-dimensional laser scanner. A support vector machine-based target screening algorithm is deployed to select the correct target from multiple candidates detected by single shot multibox detector. Furthermore, a new tracker named TLD-KCF is presented in this paper, in which a conditional scale adaptive algorithm is adopted to improve the tracking performance for a quadrotor UAV in cluttered outdoor environments. According to distance and position estimation for a moving target, our quadrotor UAV can acquire a control point to guide its fight. To reduce the computational burden, a fast path planning algorithm is proposed based on elliptical tangent model. A series of experiments are conducted on our quadrotor UAV platform DJI M100. Experimental video and comparison results among four kinds of target tracking algorithms are given to show the validity and practicality of the proposed approach.Index Terms-Path planning, quadrotor unmanned aerial vehicle (UAV), real-time target tracking, unstructured outdoor scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.