Introduction. Rare-earth orthovanadate nanoparticles (ReVO4:Eu3+, Re = Gd, Y or La) are promising agents for photodynamic therapy of cancer due to their modifiable redox properties. However, their toxicity limits their application. Objective. The aim of this research was to elucidate pro-eryptotic effects of GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles with identification of underlying mechanisms of eryptosis induction and to determine their pharmacological potential in eryptosis-related diseases. Methods. Blood samples (n=9) were incubated for 24 h with 0-10-20-40-80 mg/L GdVO4:Eu3+ or LaVO4:Eu3+ nanoparticles, washed and used to prepare erythrocyte suspensions to analyze the cell membrane scrambling (annexin-V-FITC staining), cell shrinkage (forward scatter signaling), reactive oxygen species (ROS) generation through 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) staining and intracellular Ca2+ levels via FLUO4 AM staining by flow cytometry. Internalization of europium-enabled luminescent GdVO4:Eu3+ and LaVO4:Eu3+ nanoparticles was assessed by confocal laser scanning microscopy. Results. Both nanoparticles triggered eryptosis at concentrations of 80 mg/L. ROS-mediated mechanisms were not involved in rare-earth orthovanadate nanoparticles-induced eryptosis. Elevated cytosolic Ca2+ concentrations were revealed even at subtoxic concentrations of nanoparticles. LaVO4:Eu3+ nanoparticles increased intracellular calcium levels in a more pronounced way compared with GdVO4:Eu3+ nanoparticles. Our data disclose that the small-sized (15 nm) GdVO4:Eu3+ nanoparticles were internalized after a 24 h incubation, while the large-sized (~30 nm) LaVO4:Eu3+ nanoparticles were localized preferentially around erythrocytes. Conclusions. Both internalized GdVO4:Eu3+ and non-internalized LaVO4:Eu3+ nanoparticles (80 mg / L) promote eryptosis of erythrocytes after a 24 h exposure in vitro via Ca2+ signaling without involvement of oxidative stress. Eryptosis is a promising model for assessing nanotoxicity.
We studied gene expression of five metallothioneins (MT 1-5), ubiquitin and protein p53 and their products in fibroblasts culture of the skin and lungs of white rats of different ages (2 weeks, 1, 3, and 24 months) and determined its (metallothionein 1-5 types, ubiquitin, p53) product quantity. All these proteins are protective ones, but perform their functions by using different mechanisms. Metallothionein bind, transport and excrete ions of bivalent metals, ubiquitin controls the cleavage of the defective and short-lived proteins in the proteasome, protein p53 controls apoptosis, thus ensuring the genome stability. The similarity of age dynamics of gene expression of ubiquitin and MT of cells of both sources has been shown – maximum at 3 months. Expression of p53 gene has a difference: both in the skin and lungs expression increases up to 24 months. Product quantity of p53 has a minimum in the skin at 3 months and remains constant; in the lungs, this value has a maximum at 1 month.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.