Activation of N-methyl-d-aspartate subtype glutamate receptors (NMDARs) is required for long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission at hippocampal CA1 synapses, the proposed cellular substrates of learning and memory. However, little is known about how activation of NMDARs leads to these two opposing forms of synaptic plasticity. Using hippocampal slice preparations, we showed that selectively blocking NMDARs that contain the NR2B subunit abolishes the induction of LTD but not LTP. In contrast, preferential inhibition of NR2A-containing NMDARs prevents the induction of LTP without affecting LTD production. These results demonstrate that distinct NMDAR subunits are critical factors that determine the polarity of synaptic plasticity.
Dopamine D1-like receptors, composed of D1 and D5 receptors, have been documented to modulate glutamate-mediated fast excitatory synaptic neurotransmission. Here, we report that dopamine D1 receptors modulate NMDA glutamate receptor-mediated functions through direct protein-protein interactions. Two regions in the D1 receptor carboxyl tail can directly and selectively couple to NMDA glutamate receptor subunits NR1-1a and NR2A. While one interaction is involved in the inhibition of NMDA receptor-gated currents, the other is implicated in the attenuation of NMDA receptor-mediated excitotoxicity through a PI-3 kinase-dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.